期刊文献+

Foliations on the tangent bundle of Finsler manifolds 被引量:1

Foliations on the tangent bundle of Finsler manifolds
原文传递
导出
摘要 Let M be a smooth manifold with Finsler metric F,and let T M be the slit tangent bundle of M with a generalized Riemannian metric G,which is induced by F.In this paper,we prove that (i) (M,F) is a Landsberg manifold if and only if the vertical foliation F V is totally geodesic in (T M,G);(ii) letting a:= a(τ) be a positive function of τ=F 2 and k,c be two positive numbers such that c=2 k(1+a),then (M,F) is of constant curvature k if and only if the restriction of G on the c-indicatrix bundle IM (c) is bundle-like for the horizontal Liouville foliation on IM (c),if and only if the horizontal Liouville vector field is a Killing vector field on (IM (c),G),if and only if the curvature-angular form Λ of (M,F) satisfies Λ=1-a 2/R on IM (c). Let M be a smooth manifold with Finsler metric F,and let T M be the slit tangent bundle of M with a generalized Riemannian metric G,which is induced by F.In this paper,we prove that (i) (M,F) is a Landsberg manifold if and only if the vertical foliation F V is totally geodesic in (T M,G);(ii) letting a:= a(τ) be a positive function of τ=F 2 and k,c be two positive numbers such that c=2 k(1+a),then (M,F) is of constant curvature k if and only if the restriction of G on the c-indicatrix bundle IM (c) is bundle-like for the horizontal Liouville foliation on IM (c),if and only if the horizontal Liouville vector field is a Killing vector field on (IM (c),G),if and only if the curvature-angular form Λ of (M,F) satisfies Λ=1-a 2/R on IM (c).
出处 《Science China Mathematics》 SCIE 2012年第3期647-662,共16页 中国科学:数学(英文版)
基金 supported by the Program for New Century Excellent Talents in Fujian Province and Natural Science Foundation of China (Grant Nos. 10971170,10601040)
关键词 Finsler manifold g-natural metrics Riemannian foliation Finsler流形 切丛 Finsler度量 光滑流形 黎曼度量 常曲率 IM 矢量场
  • 相关文献

参考文献16

  • 1Anastasiei M, Shimada H. Deformation of Finsler metrics. In: Antonelli P L, ed. Finslerian Geometries-A Meetings of Minds. Dordrecht-Boston-London: Kluwer Academic Publishers, 2000, 53-66.
  • 2Bao D, Chern S S, Shen Z. An Introduction to Riemannian-Finsler Geometry. New York: Spinger-Verlag, 2000.
  • 3Bejancu A, Farran H R. Foliations and Geometric Structure. Dordrecht: Springer, 2006.
  • 4Bejancu A, Farran H R. Finsler geometry and natural foliations on the tangent bundle. Rep Math Phys, 2006, 58: 131-146.
  • 5Bejancu A, Farran H R. A geometric characterization of Finsler manifolds of constant curvature K = 1. Internat J Math Math Sci, 2000, 23: 399-407.
  • 6Matsumoto M. Foundations of Finsler Geometry and Special Finsler Spaces. Saikawa, Japan: Kaiseisha, 1986.
  • 7Miernowski A, Mozgawa W. Lift of the Finsler foliation to its normal bundle. Diff Geom Appl, 2006, 24: 209-214.
  • 8Miron R. The homogeneous lift to the tangent bundle of a Finsler metric. Publ Math Debrecen, 2000, 57: 445-453.
  • 9Najafi B, Shen Z, Tayebi A. Finsler metrics of scalar flag curvature with special non-Riemannian curvature properties. Geom Dedicata, 2008, 131: 87-97.
  • 10Najafi B, Tayebi A. Finslcr Metrics of scalar flag curvature and projective invariants. Balkan J Geom Appl, 2010, 15: 90-99.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部