期刊文献+

拟α-伪样条及其性质

Quasi-α-pseudo spline and its properties
原文传递
导出
摘要 通过增加参数ω,本文给出了一类新面具,即拟α-伪样条.当ω=0时,拟0-伪样条就是伪样条,拟1/2-伪样条就是对偶伪样条.对特殊的ω≠0,本文给出了拟α-伪样条的稳定性、正则性、渐近分析和逼近阶等性质.相关结果表明拟α-伪样条具有与伪样条以及对偶伪样条类似的性质.同时,结果表明只要支撑区间稍长时,加细函数将具有更好的光滑性. With a tension parameter ω,we,in this paper,introduce a new family of masks,namely quasi-α-pseudo splines.When ω = 0,quasi-α-pseudo splines is the pseudo splines for α = 0 and the dual-pseudo splinesfor α = 1/2.For special ω ≠ 0,we present basics of quasi-α-pseudo splines which include the stability,regularity,asymptotical analysis and approximation order.These results show that the properties of quasi-α-pseudo splinesare similar to the ones of pseudo splines or dual pseudo splines.However,we can get better smoothness of therefinable functions at the expense of slightly larger support.
出处 《中国科学:数学》 CSCD 北大核心 2012年第2期165-180,共16页 Scientia Sinica:Mathematica
基金 国家自然科学基金(批准号:11071152 11126343) 广东省自然科学基金(批准号:10151503101000025)资助项目
关键词 伪样条 对偶伪样条 拟α-伪样条 稳定性 正则性 渐近分析 逼近阶 pseudo spline dual pseudo spline quasi-α-pseudo spline stability regularity asymptoticalanalysis approximation order
  • 相关文献

参考文献1

二级参考文献25

  • 1Bin Han.Symmetric orthonormal complex wavelets with masks of arbitrarily high linear-phase moments and sum rules[J]. Advances in Computational Mathematics . 2010 (2)
  • 2Amos Ron,Zuowei Shen.Affine systems inL 2 (? d ) II: Dual systems[J]. The Journal of Fourier Analysis and Applications . 1997 (5)
  • 3Dong B,Dyn N,Hormann K.Properties of dual pseudo-splines. Applied and Computational Harmonic Analysis .
  • 4Han B.On a conjecture about MRA Riesz wavelet bases. Proceedings of the American Mathematical Society . 2006
  • 5Han B.Renable functions and cascade algorithms in weighted spaces with H¨older continuous masks. SIAM Journal on Mathematical Analysis . 2008
  • 6Han B,Shen Z.Compactly supported symmetric C∞ wavelets with spectral approximation order. SIAM Journal on Mathematical Analysis .
  • 7Li S,,Shen Y.Pseudo box splines. Applied and Computational Harmonic Analysis . 2009
  • 8M Unser,T Blu.Fractional splines and wavelets. SIAM Review . 2000
  • 9I. Selesnick.Smooth wavelet tight frames with zero moments. Applied and Computational Harmonic Analysis . 2001
  • 10Q. Mo,Y. Shen,S. Li.A new proof of some polynomial inequalities related to pseudo-splines. Applied and Computational Harmonic Analysis . 2007

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部