期刊文献+

基于K-SVD和残差比的低信噪比图像稀疏表示去噪算法 被引量:13

Low SNR image denoising via sparse and redundant representations over K-SVD algorithm and residual ratio iteration termination
原文传递
导出
摘要 针对低信噪比图像去噪问题,提出了一种基于K-SVD(Singular Value Decomposition)和残差比(Residual Ratio Iteration Termination)的正交匹配追踪(Orthogonal Matching Pursuit,OMP)图像稀疏分解去噪算法。该算法利用K-SVD算法将离散余弦变换(Discrete cosine transform,DCT)框架产生的冗余字典训练成能够有效反映图像结构特征的超完备字典,以实现图像的有效表示。然后以残差比作为OMP算法迭代的终止条件来实现图像的去噪。实验表明,该算法相对于传统基于Symlets小波图像去噪、基于Contourlet变换的图像去噪,以及基于DCT冗余字典的稀疏表示图像去噪,能够更加有效地滤除低信噪比图像中的高斯白噪声,保留原图像的有用信息。 For the low SNR(Signal to Noise Ratio) images denoising,a new algorithm is proposed based on K-SVD and residual ratio iteration termination.Firstly,an initial redundant dictionary is produced under the DCT framework and the dictionary is trained by K-SVD algorithm through the noisy image.A new dictionary that reflects the structure of the image effectively is produced.Then,the residual ratio is used as the iteration termination of OMP algorithm to remove the zero-mean white and homogeneous Gaussian additive noise from a given image.Different kinds of images with different noise levels are used to test the algorithm.The results show that the algorithm has strong robustness and performs better than the image denoising algorithm using Symlets wavelet,Contourlet and sparse representation based on DCT redundant dictionary.
出处 《光学技术》 CAS CSCD 北大核心 2012年第1期23-29,共7页 Optical Technique
基金 国家自然科学基金(60974090) 中央高校基本科研业务费资助(CDJXS10172205)
关键词 低信噪比 图像去噪 稀疏分解 K-SVD OMP image denoising K-SVD OMP sparse representation SNR
  • 相关文献

参考文献14

  • 1尹忠科,解梅,王建英.基于稀疏分解的图像去噪[J].电子科技大学学报,2006,35(6):876-878. 被引量:25
  • 2Do M N, Vetterli M. Framing pyramids [J]. IEEE Transaction on Signal Processing, 2003, 9(51):3736--3745.
  • 3Candes E, Demanet L, Donoho D, et al. Fast discrete curvelet transforms [D]. Stanford, California, USA: Department of Statistics, Stanford University, 2005.
  • 4Donoho D L. Wedgelets: nearly minimax estimation of edges [J]. Annals of Statistics, 1999, 27(3):859--897.
  • 5Peyre G, Mallat S. Discrete bandelets with geometric orthogo- nal filters[C]. Proceedings of ICIP. Los Alamitos, USA: IEEE Computer Society, 2005 : 65--68.
  • 6Mallat S, Zhang Z. Matching pursuits with time-frequency dic- tionaries [J]. IEEE Transaction on Image Processing, 1993, 41 (12) : 3397--3415.
  • 7Tropp J. Greed is good: Algorithm results for sparse approxi- mation[J]. IEEE Trans. Information Theory, 2004, 50(10):2231-2242.
  • 8Gilbert A, Muthukrishnan S, Strauss M, et al. Improved sparse approximation over quasi-coherent dictionaries [C]. ICIP, Barcelona, Spain, Sep. , 2003,1:37-40.
  • 9Gandes E, Donoho D. New tight frames of curvelets and opti- mal representations of objects with C2 singularities [J]. Comm on Pure and Appl Math, 2004, 57:219--266.
  • 10Aharon M, Elad M, Bruckstrein A M. The K-SVD: an algo- rithm for designing of over-complete dictionaries for sparse rep- resentation [J]. IEEE Transaction on Image Processing, 2006, 54(11): 4311--4322.

二级参考文献21

  • 1王建英,尹忠科.基于稀疏分解的微弱信号检测方法[J].铁道学报,2007,29(2):114-117. 被引量:10
  • 2Abdallah S A, Plumbley M D. Unsupervised analysis of polyphonic music by sparse coding [J].IEEE Transactions on Neural Networks, 2006, 17 ( 1 ) : 179- 196.
  • 3Malioutov D M, Cetin M, Willsky A S. A sparse signal reconstruction perspective for source localization with sensor arrays[J]. IEEE Transactions on Signal Processing, 2005, 53(8) :3010-3022.
  • 4Liu H H, Schimpf P H, Dong G Y. Standardized shrinking LORETA-FOCUSS (SSLOFO) : A new algorithm for spatio-temporal EEG source reconstruc-tion [J].IEEE Transactions on Biomedical Engineering, 2005, 52(10):1681-1691.
  • 5Chen S, Donoho D L, Saunders M A. Atomic decomposition by basis pursuit [J]. SIAM Review, 2001, 43(1): 129-159.
  • 6Yeste-Ojeda O A, Grajal J. Atomic decomposition for ISAR imaging [C-]//IEEE Conference on Radar. [s. l. ]:IEEE, 2006: 504-509.
  • 7Mallat S, Zhang Z. Matching pursuits with time-frequency dictionaries [J]. IEEE Transactions on Signal Processing, 1993,41(12) : 3397-3415.
  • 8Donoho D L, Huo X. Uncertainty principles and ideal atomic decomposition [J]. IEEE Transactions on Information Theory, 2001, 47(7) :2845-2862.
  • 9Donoho D L. Wedgelets: Nearly-minimax estimation of edges [J]. The Annals of Statistics, 1999, 27 (3) : 959-897.
  • 10Huber P J. Projection pursuit [J]. The Annals of Statistics, 1985, 13(2) :435-475.

共引文献57

同被引文献121

  • 1刘仁金,黄贤武.图像分割的商空间粒度原理[J].计算机学报,2005,28(10):1680-1685. 被引量:24
  • 2尹忠科,解梅,王建英.基于稀疏分解的图像去噪[J].电子科技大学学报,2006,35(6):876-878. 被引量:25
  • 3刘红梅,王少萍,欧阳平超.基于小波包和Elman神经网络的液压泵故障诊断[J].北京航空航天大学学报,2007,33(1):67-71. 被引量:23
  • 4Gonzalez R C,Woods R E.数字图像处理[M].阮秋琦,阮宇智,译.2版.北京:电子工业出版社,2003.
  • 5INERNEY B, CORKERY G, liminary in vivo study on the tracking in poultry using ink AYALEW G, et al. A pre- potential application of e- printed 2D barcodes [ J ] ..Computers and Electronics in Agriculture,2010,73:l12- ll7.
  • 6DAVID M. A low-complexity pre-processing system for re- storing low-quality qr code images [ J ]. IEEE Transac- tions on Consumer Electronics ,2011,57 ( 3 ) : 1320-1328.
  • 7ESLAMI R, RADHA H. Translation-invariant contourlet transform and its application to image denoising[ J]. IEEE Trans. Image Process,2006, 15( 11 ) : 3362-3374.
  • 8ELAD M, AHARON M. Image denoising via sparse and redundant representations over learned dictionaries [ J ]. IEEE Transaction on Image Processing, 2006, 15 ( 12 ) : 3736-3745.
  • 9AHARON M, ELAD M, BRUCKSTEIN A M. K-svd: An algorithm for designing of overcomplete dictionaries for sparse representation [ J ]. IEEE Transactions on Signal Processing, 2006, 54 ( 11 ) : 4311-4322.
  • 10许相莉,张利彪,于哲舟,等.基于商空间粒度计算的图像检索[J].计算机研究与发展,2009,46(Suppl.):337—342.

引证文献13

二级引证文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部