期刊文献+

图值神经网络体系结构及在蛋白质预测中的应用

Architecture of Graph-valued Neural Network and its Application in the Protein Folding Prediction
下载PDF
导出
摘要 提出了一种新的蛋白质结构预测模型——图值神经网络。该模型以半边图理论为依据,用可结合半边图模型表示原子间和原子团间相互的结合作用,从而将对蛋白质的正确折叠起关键作用的大分子相互作用因素和环境融合进图值神经网络预测模型。此外,针对全原子计算量大的缺点,在图值神经网络中引入基团,从而在一定程度上减小了计算量。通过对模拟蛋白质折叠过程中能量变化的分析,实验表明这种融合了原子间以及原子团间作用力的模型是完全可行的。 Graph-Valued Neural Network is based on the theory of half-link graph, it can not only be used to represent the force between the atoms, but also the force between the atomic groups. Thus, the factors which play a key role in protein folding can be taken into Graph-Valued Neural Network. In addition, given the massive amount of calculation, we also bring "Group" into Graph-Valued Neural Network to reduce the amount of calculation to some extend. After analyzing changes of energy in the process of protein folding simulation, we come to a conclusion that the prediction model which combined with the force between the atoms and the force between the atomic groups is feasible.
作者 张居晓 殷涛 孟朝晖 ZHANG Ju-xiao, YIN Tao2, MENG Zhao-hui (1Nanjing Technical College of Special Education, Nanjing 210038, China; 2.Computer & Information College of Hohai University , Nanjing 210098, China)
出处 《电脑知识与技术》 2012年第1期112-115,共4页 Computer Knowledge and Technology
基金 江苏省‘青蓝工程’资助(苏教师〔2010〕27号)
关键词 蛋白质结构预测 图值神经网络 半边图 基团 Protein Structure Prediction Graph-Valued Neural Network Half-Link Graph Group
  • 相关文献

参考文献4

  • 1Anfinsen C B. Principles that Govern the Folding of Protein Chains[J]. Science, 1973,181: 223-230.
  • 2Qian N, Sejnowski T J. Predicting the secondary structure of globular proteins using neural network models[J]. J Mol Bio, 1988,202(4): 865-884.
  • 3孟朝晖.半边图模型之多层次认知系统[J].计算机工程与应用,2006,42(30):28-34. 被引量:6
  • 4McKnight C J, Matsudaira P T, Kim P S. NMR structure of the 35-residue villin headpiece subdomain[J]. Nat Struct Biol, 1997, 4: 180-184.

二级参考文献12

  • 1Lehn J.Supramolecular Chemistry:Concepts and Perspectives.Weinheim (Bundesrepublik Deutschland):VCH,1995
  • 2Han J,Kambr M.Data Mining:Concepts and Techniques[M].Academic Press,2000
  • 3Ester M,Kriegel HP,Sander J et al.A density-based algorithm for discovering clusters in large spatial databases[C].In:Proc 1996 Int Conf Knowledge Discovery and Data Mining(KDD'96),Portland,OR,1996:226~ 231
  • 4Karypis G,Han EH,Kumar V.CHAMELEON:A hierarchical clustering algorithm using dynamic modeling[J].Computer,1999;32:68~75
  • 5Kohonen T.The Self-Organizing Map[C].In:Proc IEEE,1990; 78:1464~1480
  • 6Mallat S.A Wavelet Tour of Signal Processing[M].2nd ed,Academic Press,1999
  • 7Zadeh LA.Towards a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic[J].Fuzzy Sets and Systems,1997; 19(1):111~127
  • 8Berry G,Boudol G.The Chemical Abstract Machine[J].Theoretical Computer Science,1992;96:217~248
  • 9Special Issues on PCNN.IEEE Trans on Neural Networks,1999; 10(3)
  • 10Johson L,Padgett ML.PCNN models and applications[J].IEEE Trans on Neural Networks,1999; 10(3):480~498

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部