期刊文献+

离散时间模型的幂效用无差别定价

Indifference Pricing of Power Utility Function Under Discrete-time Model
下载PDF
导出
摘要 研究了离散时间模型的幂效用函数无差别定价问题.利用鞅方法证明了完全市场的幂效用函数无差别定价为无套利定价,讨论了不完全市场中幂效用函数无差别定价计算的关键问题,并得到了单阶段三叉树模型的幂效用函数的无差别定价满足的方程. This paper deals with the indifference pricing of power utility function under discrete-time model.It is shown that the indifference pricing is free-arbitrage pricing by the martingale approach.The main thing about the power utility function indifference pricing is considered in the incomplete market,and the equation satisfying the power utility function indifference pricing is obtained under single stage trinomial tree model.
出处 《河南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第1期11-15,共5页 Journal of Henan Normal University(Natural Science Edition)
基金 国家自然科学基金(11001077) 河南省教育厅软科学基金(2009A630026)
关键词 幂效用函数 无差别定价 鞅测度 条件期望 power utility function indifference pricing martingale measure conditional expectation
  • 相关文献

参考文献8

  • 1Hodges S D, Neuberger A. Optimal replication of contingent claims under transaction costs[J]. Review of Futures Markets,1989,8..222- 239.
  • 2Henderson V, Hobson D. Real options with constant relative risk aversion[J]. Journal of Economic Dynamics and Control,2002,27,329- 355.
  • 3Musiela M, Zariphopoulou T A. An example of indifference prices under exponential preferences[J]. Finance and Stochastic,2004,7(8) : 229-239.
  • 4Benth F E, Karlsen K H, A PDE representation of the density of the minimal entropy martingale measure in stochastic volatility markets [J]. Pure Mathematics,2003(5): 1-21.
  • 5Musiela M, Zariphopoulou T A. A valuation algorithm for indifference prices in incomplete markets[J]. Finance and Stochastic, 2005,8 (3) :399-414.
  • 6闫海峰,刘利敏,杨建奇.随机波动率模型的效用无差别定价和套期保值策略[J].系统工程学报,2007,22(4):379-385. 被引量:12
  • 7闫海峰,刘利敏,杨建奇.随机波动率模型的最小熵鞅测度和效用无差别定价[J].工程数学学报,2009,26(1):43-50. 被引量:7
  • 8刘利敏,牛保青,闫海峰.幂效用函数的无差别定价和套期保值[J].数学的实践与认识,2009,39(5):42-46. 被引量:5

二级参考文献27

  • 1Jackwerth J, Rubinstein. Recovering probability distributions from contemporaoneous security prices[J]. Journal of Finance, 1996, 51:1611-1631.
  • 2Engle R F. Autoregressive conditional heteroscedasticity with estimates of the variance of united kingdom inflation[J]. Econ, 1982, 50:987-1007.
  • 3Engle R F, Mustafa C. Implied ARCH model from options prices[J]. Journal Econ, 1992, 52:289-331.
  • 4Becherer D. Utility-indifference hedging and valuation via reaction-diffusion systems[J]. Proceedings of the Royal Society Series A, 2004, 460:27-51.
  • 5Benth F E, Karlsen K H. A PDE representation of the density of the minimal entropy martingale measure in stochastic volatility markets[J]. Pure Math, 2003, 5:1-21.
  • 6Hodges S D, Neuberger A. Optimal replication of contingent claims under transaction costs[J]. Rev Fht Markets, 1989, 8:222-239.
  • 7Delbaen F, Grandits P, Rheinlander T, Samperi D, Schweizer M, Stricker C. Exponential hedging and entropic penalties[J]. Math Finance, 2002, 12:99-123.
  • 8Fujiwara T, Miyahara Y. The minimal entropy martingale measures for geometric L~vy processes[J]. Finance Stochast, 2003, 7(4): 509-531.
  • 9Rheinlander T. An entropy approach to the stein/stein model with correlation[J]. Finance Stochast, 2005, 9(3): 399-413.
  • 10Hodges S D, Neuberger A. Optimal replication of contingent claims under transaction costs[J]. Review of Futures Markets, 1989,8 : 222-239.

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部