期刊文献+

变形对称多芯屏蔽电缆电容的LBEM分析 被引量:1

Linear Boundary Element Method Analysis on the Capacitance of Various Deformed Symmetry Shielded Multiconductor Cable
下载PDF
导出
摘要 介绍用线性边界元法计算对称多芯屏蔽电缆电容的基本原理和求解过程.2个工程实例的计算结果表明:用线性边界元法计算对称多芯屏蔽电缆,不仅具有较高的精度,而且可很方便应用于各类变形多芯屏蔽电缆的工程计算;给出了两种多芯屏蔽电缆不同位置放置时各芯线间的耦合电容随变形程度变化的关系曲线,获得了两种电缆合适敷设位置. The linear boundary element method(LBEM) is presented as a approach for the analysis and design of various symmetry shielded multiconductor cables.Two representative computational examples,the deformed shielded balanced pair transmission line and the deformed shielded cable consisting of 3 cylindrical conductors,are given to validate the theory.To demonstrate the accuracy and flexibility of the LBEM,the influence of the deformation degree of the last two cables on the results are discussed,and the curves of the coupling capacitance that the influence of the deformation degree of the latter two cables at different location and the suitable location for laying of cables are given.
作者 帅春江
出处 《河南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第1期63-65,77,共4页 Journal of Henan Normal University(Natural Science Edition)
基金 陕西省教育厅科技项目(09JK378) 陕西理工学院人才启动项目(SLGQD0737)
关键词 线性边界元法 对称多芯屏蔽电缆 变形 耦合电容 linear boundary element method(LBEM) symmetry shielded multiconductor cable deformation coupling capacitance
  • 相关文献

参考文献5

二级参考文献18

  • 1戴培良,沈树民.抛物型积分微分方程的变网格有限元法[J].高等学校计算数学学报,1994,16(3):242-249. 被引量:20
  • 2Miller C M. Capacitances of a shielded balanced-pair transmission line[J]. Bell Syst Tech J, 1972, 50(3):759--776.
  • 3Paul C R, Feather A E. Computation of the transmission line inductance and capacitance matrices from the generalized capacitance matrix[J]. IEEE Transaction, 1976, EMC-18(4) : 175--183.
  • 4Nordgard J D. The capacitances and surface-charge distributions of a shielded balanced paid[J]. IEEE Trans, 1976, MTT-24(2) : 94--100.
  • 5Nordgard J D. The capacitances and surface charge distributions of a shielded unbalanced pair[J]. IEEE Trans, 1977, MTT-25(2) : 137--140.
  • 6An H, Wang T, Bosisio R G, et al. Accurate closed form expressions for characteristic impedance of coupled line with sliced coaxial cable[J]. Electronics Letters, 1005, 31(23) : 2010--2020.
  • 7Benahmed N, Feham M. Finite element analysis of RF couplers with sliced coaxial cable[J]. Microwave Journal, 2000,43(11):106--120.
  • 8Teppati V, Goano M, Ferrero A. Conformal-mapping design tools for coaxial couplers with complex cross section[J].IEEE Trans, 2002,MTT-50(12) : 2339--2345.
  • 9Zheng O, Hou D, Xie F, et al. Solution of two-dimensional Laplace equation by multipole theory method[J]. Journal of Electromagnetic Waves Applications, 1999, 13(8):1061--1076.
  • 10Cannon J R,Yanpinglin.A priori L2 error estimate for nonlinear diffusion equations with memory[J].SIAM J.Numer.Anal.,1990,27:595~607.

共引文献15

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部