期刊文献+

基于模糊自适应卡尔曼滤波的SLAM算法 被引量:9

SLAM algorithm based on fuzzy adaptive Kalman filter
原文传递
导出
摘要 针对同步定位与地图创建(SLAM)问题中难以建立准确的先验噪声模型的问题,提出一种改进的模糊自适应卡尔曼滤波算法.该算法通过在线监测新息的变化,利用模糊逻辑对系统噪声和观测噪声的权重进行实时调整,进而改变系统对观测信息的信赖和利用程度,使滤波器最终趋于稳定.为了保证系统的实时性,提出一种直接将输入和输出进行模糊隶属函数匹配的方法代替模糊推理.将新的滤波算法用于SLAM仿真实验,结果表明该算法能根据噪声变化进行快速调整,滤波精度较高,相比标准EKF对定位和构图精度提升了50%以上. A improved fuzzy adaptive Kalman filter was proposed to establish accurate priori noise model in the simultaneous localization and mapping (SLAM) problem. Fuzzy logic was used to adjust the importance weights of system noise and observation noise instantaneously through on-line monitoring of innovation, and the reliant and utilization degree of the observation were furthermore modified. To guarantee the real-time performance of system, a direct input-output fuzzy membership function matching approach was proposed to take the place of the fuzzy reasoning. In the simulation, the filter algorithm was applied in the SLAM problem, and the results show that the filter is capable of quickly adjusting according to the variation of noise immediately, and it improves the localization and mapping accuracy by more than 50% compared with the standard extended Kalman filter (EKF).
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第1期58-62,共5页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(60904087) 黑龙江省博士后科研启动基金资助项目(LBH-Q09127)
关键词 滤波算法 同步定位 地图创建 自适应卡尔曼滤波 模糊推理 新息 filter algorithm simultaneous localization mapping adaptive Kalman filter fuzzy rea-soning innovation
  • 相关文献

参考文献11

  • 1Smith R, Self M, Cheeaeman P. Estimating uncertain spatial relationships in robotics[M]. London: Spring- er Verlag, 1990.
  • 2Dissanayake M W M G, Newman P, Clark S, et al. A solution to the simultaneous localization and map building(SLAM) problem[J]. Transactions of Ro- botics and Automation, 2001, 17(3): 229-241.
  • 3Montemerlo M, Thrun S, Koller D, et al. FastSLAM : a factored solution to the simultaneous localization and mapping problem[C]// Proceedingsof the 18th AAAI National Conference on Artificial In- telligence. Edmonton: AAAI Press, 2002: 593-598.
  • 4Montemerlo M, Thrun S, Koller D, et al. FastSLAM2. 0: an improved particle filtering algo- rithm for simultaneous localization and mapping that provably converges[C]// Proceedings of the 16th In- ternational Joint Conference on Artificial Intelligence (IJCAI). Acapulco: AAAI Press, 2003: 1151-1156.
  • 5Delius D M, Burgard W. Maximum-likelihood sam- pie-based maps for mobile robots[J]. Robotics and Autonomous Systems, 2010, 58(2):133-139.
  • 6Leonard J J, Feder H J S. Decoupled stochastic map- ping[J]. IEEE Journal of Oceanic Engineering, 2001, 26(4) : 561-571.
  • 7Cadena C, Neira J. SLAM in O(log n) with the com- bined Kalman-information filter[J]. Robotics and Au- tonomous Systems, 2010, 58(11): 1207-1219.
  • 8LI Hui-Ping XU De-Min ZHANG Fu-Bin YAO Yao.Consistency Analysis of EKF-based SLAM by Measurement Noise and Observation Times[J].自动化学报,2009,35(9):1177-1184. 被引量:14
  • 9Chandima D P, Lanka U, Kergo W, et al. A fuzzy logic based approach to the SLAM problem using using pseudolinear models with multiframe data asso- ciation [J]. Artificial Life and Robotics, 2008, 13(1) :155-161.
  • 10孙枫,王文晶,刘付强,朱怡.基于SLAM的水下导航算法及仿真分析[J].仪器仪表学报,2008,29(10):2072-2077. 被引量:7

二级参考文献37

  • 1厉茂海,洪炳熔,蔡则苏.一种新的移动机器人全局定位算法[J].电子学报,2006,34(3):553-558. 被引量:10
  • 2荣思远,穆荣军,崔乃刚.EKF容错滤波方法在磁测自主导航中的应用研究[J].电子学报,2006,34(12):2268-2271. 被引量:9
  • 3SMITH R, SELF M, CHEESEMAN P. Estimating uncertain spat-ial relationships in robotics[ A]. Proceedings of Conference on Uncertainty in Artificial Intelligence [ C ]. 1988:435-461.
  • 4LI M H, HONG B R, CAI Z S, et al. Novel rao-black-wellized particle filter for mobile robot SLAM using monocular vision [ J ]. International Journal of Intelligent Technology., 2006,1 ( 1 ) :63-69.
  • 5CHRISTIAN B, OLIVER W, BERNARDO W. Using 3D laser range data for SLAM in outdoor environments [ A ]. Proceedings of the 2003 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems[C]. 2003: 188-193.
  • 6IOSEB.A T R, SEBASTIEN D R. Concurrent mapping and localization using sidescan sonar[ J]. IEEE Journal of Oceanic Engineering, 2004,29(2) :442-456.
  • 7JONG H K, SALAH S. Airborne simuhaneous localization and map Building [ A ]. Proceedings of the 2003 IEEE International Conference on Robotics & Automation [C] .2003:406-411.
  • 8HUGH D W, TIM B. Simultaneous localization and mapping: Part Ⅰ[ J ]. IEEE Robotics &Automation Magazine, 2006,13(2) :99-108.
  • 9GAMINIM W M D, PAULN, HUGH F D W. A solution to the simultaneous localization and map building (SLAM) problem [ J ]. IEEE Transactions on Robotics and Automation, 2001,17 ( 3 ) :229-241.
  • 10PAUL N, LEONARD J J. Pure range-only sub-sea SLAM [ A ]. Proceedings of the 2003 IEEE international conference on Robotics & Automation[ C]. 2003 : 1921-1926.

共引文献30

同被引文献89

引证文献9

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部