期刊文献+

有界噪声激励下Josephson系统的混沌运动 被引量:4

Chaotic motion of a Josephson system excited by bounded noise
下载PDF
导出
摘要 利用随机Melnikov方法分析了有界噪声激励下Josephson系统的运动,并运用均方准则得到了系统产生混沌的临界值。结果表明:有界噪声对系统混沌行为的产生起到了加速的作用;且有界噪声的强度越大,混沌吸引子的发散程度就越大。最后利用数值模拟得到系统的庞加莱映射,分析了在不同参数组合下系统庞加莱映射的特征。结果显示:当有界噪声中的一个参数发生改变,系统的庞加莱映射也会发生相应的改变;特别是有界噪声的激励强度增大时,系统庞加莱映射的发散程度也会随之增大。这从侧面验证了理论结果的正确性。 The chaotic behavior of Josephson system under bounded noise is discussed.Firstly,the motion of Josephson system under bounded noise is investigated by employing stochastic Melnikov technique,and the necessary conditions for chaotic motion of this stochastic system are provided according to the mean square criterion.It is found that the bounded noise speeds up the chaotic motion of the stochastic system,and the bigger the bounded noise intensity is,the greater the chaotic attractor spreads.Finally,the Poincare map of the Josephson system under bounded noise is investigated numerically,and the features of Poincare maps under different parameter combination are analyzed.The results obtained show that the Poincare map of the system changes as the parameter of bounded noise changes,especially the intensity of bounded noise increases,then the divergence of the Poincare map of the system will increase which verifies the theoretical results obtained.
作者 王振佩 徐伟
出处 《应用力学学报》 CAS CSCD 北大核心 2012年第1期43-47,116,共5页 Chinese Journal of Applied Mechanics
基金 国家自然科学基金(10872165 10932009)
关键词 有界噪声 Josephson系统 随机Melnikov方法 混沌 bounded noise,Josephson system,stochastic Melnikov technique,chaotic
  • 相关文献

参考文献19

  • 1Jing Z J. Application of qualitative methods of differential equations to study phase-locked loops[J]. SIAM J Appl Math, 1983, 43(6): 1245-1258.
  • 2Jing Z J. Chaotic behavior in the Josephson equations with periodic force[J]. SIAMJAppl Math, 1989, 49(6): 1749-1758.
  • 3Jing Z J, Chan K Y, Xu D S, et al. Bifurcation of periodic solutions and chaos in Josephson system[J]. Discrete Contin Dyn Syst, 2001,7(3): 573-592.
  • 4Jing Z J, Cao H J. Bifurcation of periodic orbits in a Josephson equation with a phase shift[J]. Int J Bifurcat Chaos: Appl Sci Eng, 2002, 12(7): 1515-1530.
  • 5刘曾荣.混沌的微扰判据[M].上海:上海科技教育出版社,1995.
  • 6李继彬.混沌与Melnikov方法[M].重庆:重庆大学出版社,1988.
  • 7Guckenherner J, Holmes P. Nonlinear oscillations in dynamical systems and bifurcation of vector fields[M]. New York: Springer-Verlag, 1983.
  • 8Li J R, Xu W. Chaotic motion of Van-der-Pol-Mathieu-Duffing system under bounded noise parametric excitation[J]. Journal of Sound andVibration, 2008, 309: 330-337.
  • 9Simiu E. Chaotic transitions in deterministic and stochastic dynamical systems[M]. New Jersey: Pfinceton University Press, 2002.
  • 10Bartuccelli M, Christiansen P L, Pedesen N F, et al. Prediction of chaos in a Josephson junction by the melnikov function technique[J]. PhysRevB, 1986, 33: 4686-4691.

共引文献4

同被引文献32

引证文献4

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部