期刊文献+

基于黏弹性的微注射成型流动模拟

Flow simulation for micro-injection molding based on viscoelastic model
下载PDF
导出
摘要 应用有限元方法研究了微注射成型中瞬态、可压缩、非牛顿熔体流动的黏弹性对流动前沿及流动平衡的影响。基于Phan-Thien-Tanner模型建立了熔体流动的本构方程,利用Hele-Shaw假设和简化建立了瞬态、可压缩、非牛顿熔体流动的连续性方程、动量方程、能量方程;为了有效地描述微注射成型的尺寸效应,采用了边界滑移和表面张力边界条件。通过分部积分和待定系数法导出了带有边界信息的变分方程和求解应力分量的半解析公式,构造了有限元离散求解及超松驰迭代算法。模拟结果表明:熔体的黏弹性对浇口附近的压力和后续的熔体流动前沿有重要影响;与黏性模型相比,黏弹性模型可以控制模拟压力的快速增长,减少不同型腔之间的充填差异,与短射实验结果也更吻合。 The effects of melt viscoelastic on melt front advancement and flow balance in micro-injection molding is investigated in terms of transient,compressible and non-Newtonian flow using finite element method.The Phan-Thien-Tanner model is used to represent the rheological behavior of viscoelastic flow.The governing equations for melt flow are established based on Hele-Shaw theory.To effectively describe the microscale effects,the slip boundary condition and surface tension are added in the mathematical model for melt flow in micro-injection molding.The new variational equation for pressure including boundary conditions is generalized using integration by parts,and a semi-analytical formula is derived with undermined coefficient method.To improve the computing efficiency,an iterative strategy based on finite element method and successive over relaxation method is constructed for solving melt flow problem.Numerical simulation reveals that the melt viscoelasticity plays an important role in predicting melt pressure at gate and succeeding melt front advancement in cavity.Using viscoelastic model,the rapid increase of simulated pressure can also be controlled,and the filling difference among different cavities can be reduced.The short shot experiments are in fair agreement with the predicted melt front from viscoelastic model.
出处 《应用力学学报》 CAS CSCD 北大核心 2012年第1期54-59,117,共6页 Chinese Journal of Applied Mechanics
基金 国家自然科学基金(10872185)
关键词 微注射成型 黏弹性 有限元 滑移边界 表面张力 micro-injection molding,viscoelastic,finite element method,slip-boundary condition,surface tension
  • 相关文献

参考文献16

  • 1Giboz J, Copponnex T, Mele P. Microinjection molding of thermoplastic polymers: a review[J]. J Micromech Microeng, 2007,17: R96-R109.
  • 2Lin H Y, Young W B. Analysis of the filling capability to the microstructures in micro-injection molding[J]. Applied Mathematical Modelling, 2009, 33: 3746-3755.
  • 3Bhagavatula N, Castro J M. Modelling and experimental verification of pressure prediction in the in-mould coating (IMC) process for injection moulded parts[J]. Modelling Simul Mater Sci Eng, 2007, 15: 171-189.
  • 4Yao D, Kim B. Simulation of the filling process in micro channels for polymeric materials[J]. J Micromech Microeng, 2002, 12: 604-610.
  • 5Tolinski M. Macro challenges in micromolding[J]. Plast Eng, 2005, 61:14-16.
  • 6Armstrong R C, Brown R A, Quizani L M, et al. Measurement of velocity and stress fields in complex polymer flows[C]//Proeeeding of the 11th Int Conf Rheology , Theoretical and Applied Rheology. Amsterdam: Elsevien, 1992: 16-23.
  • 7Aboubacar M, Matallah H, Webster M F. Highly elastic solutions for Oldroyd-B and Phan-Thienfranner fluids with a finite volume/element method : planar contraction flows[J] . J Non-NewtonianFluidMech, 2002, 103: 65-103.
  • 8Palmer A S, Phillips T N. Numerical approximation of the spectra of Phan-Thien Tanner liquids[J]. Numer Algorithms, 2005,38: 133 - 153.
  • 9Isayev A I, Tsui-Hsun Lin. Frozen-in birefringence and anisotropic shrinkage in optical moldings : I Theory and simulation scheme[J]. Polymer, 2010, 51: 316-327.
  • 10Lin H Y, Chang C H, Young W B. Experimental and analytical study on filling of nano structures in micro injection molding[J]. Int Communications in Heat and Mass Transfer, 2010, 37: 1477-1486.

二级参考文献14

  • 1Fortin A, Zine A, Agassant JF. Computing viscoelastic fluid flow problem at low cost. Journal of Non-Newtonian Fluid Mechanics, 1992, 45:209~229
  • 2Hieber CA, Shen SF. A finite-element/finite-difference simulation of the injection-molding filling process. Journal of Non-Newtonian Fluid Mechanics, 1980, 7:1~32
  • 3Schlichting H. Boundary-Layer Theory. New York: McGraw Hill, 1968. 131~142
  • 4Wang VW, Hieber CA, Wang KK. Dynamic simulation and graphics for the injection molding of three-dimensional thin parts. Journal of Polymer Engineering, 1986, 7:21~45
  • 5Chiang HH, Himasekhar K, Wang KK. Integrated simulation of fluid flow and heat transfer in injection molding for the prediction of shrinkage and warpage. Journal of Engineering Material Technology, 1993, 115:37~47
  • 6Chen BS, Liu WH. Numerical simulation and experimental investigation of injection mold filling with melt solidification. Polymer Engineer and Science, 1989, 29:1039~1050
  • 7Chiang HH, Hieber CA, Wang KK. A unified simulation of the filling and postfilling stages in injection molding. PartⅠ: Formulation. Polymer Engineer and Science, 1991, 31:116~124
  • 8Chiang HH, Hieber CA, Wang KK. A unified simulation of the filling and postfilling stages in injection molding. PartⅡ: Experimental verification. Polymer Engineer and Science, 1991, 31:125~139
  • 9Chen BS, Liu WH. Numerical simulation of the post-filling stage in injection molding with a two-phase model. Polymer Engineer and Science, 1994, 34:835~846
  • 10Najmi LA, Lee DY. Modeling of mold filling process for powder injection molding. Polymer Engineer and Science,1991, 31:1137~1148

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部