期刊文献+

碳热还原法制备SiC纳米线及其结构表征 被引量:1

Synthesis and Characterization of SiC Nanowires Using Carbon-Thermal Reduction
下载PDF
导出
摘要 采用简单的碳热还原法,以碳粉和SiO2微粉分别作为碳源和硅源,在1 550℃高温真空气氛箱式炉中制备SiC纳米线。并利用X射线衍射(XRD)、扫描电镜(SEM)和透射电镜(TEM)、傅里叶变换红外(FTIR)等测试手段对反应产物进行组分、形貌和结构表征。研究结果表明:产物为直线六棱柱形状的β-SiC纳米线,直径在50~300nm之间,纳米线内部含有较多的堆垛层错;纳米线主要以气—固(VS)机制生长。 SiC nanowires are synthesized via the reaction between carbon powder and silicon dioxide powder by a simple carbon-thermal reduction in high-temperature vacuum furnace at 1550 ~C. X-ray dif- fraction (XRD), Scanning electron microscopy (SEM) and transmission electron microscopy (TEM), Fourier transform infrared spectrometer (FTIR) are employed to characterize the obtained product. The β- SiC nanowires experience a beeline hexagonal section and diameters in the range of 50 -300 nm. A high stacking faults density exists in the nanowires. The growth mechanism of the nanowires is considered to involve a vapor-solid (VS) process.
出处 《浙江理工大学学报(自然科学版)》 2012年第2期245-248,共4页 Journal of Zhejiang Sci-Tech University(Natural Sciences)
基金 国家自然科学基金项目(50672088 50902123 60806045) 国家基础研究项目(973项目)(2010CB933501)
关键词 碳化硅 纳米线 碳热还原 气-固机制 silicon carbon nanowires carbon-thermal reduction vapor-solid (VS) mechanism
  • 相关文献

参考文献11

  • 1Dai H J, Wong E W, Lu Y Z, et al. Synthesis and characterization of carbide nanorods [J]. Nature, 1995, 375: 769-772.
  • 2Baek Y, Yong H R, Kijung Y. Structural characterization of β-SiC nanowires synthesized by direct heating method [J] . Materials Science and Engineering: C, 2006, 26: 805-808.
  • 3Ye H H, Titchenal N, Cogotsi Y, et al. SiC nanowires synthesized from electrospun nanofiber templates [J]. Advanced Materials, 2005, 17: 1531-1535.
  • 4Zhou W M, Yang B, Yang Z X, et al. Largescale synthesis and characterization of SiC nanowires by high-frequency induction heating[J]. Applied Surface Science, 2006, 252.. 5143-5148.
  • 5吴旭峰,凌一鸣.电弧放电法制备SiC纳米丝的实验研究[J].真空科学与技术学报,2005,25(1):30-32. 被引量:11
  • 6Wang S. Characterization of defect structures in SiC single crystals using synchrotron X-ray topographg[J]. Materials Research Society, 1994, 307: 249-255.
  • 7Li G Y, Li X D, Chen Z D, et al. Large areas of centimeters-long SiC nanowires synthesized by pyrolysis of a polymer precursor by a CVD route[J]. J Phys Chem C, 2009, 113: 17655-17660.
  • 8Jian W, Ke Z L, He J L, et al. Growth and morphology of one-dimensional SiC nanostructures without catalyst assistant[J]. Materials chemistry and Physics, 2006, 95: 140-144.
  • 9Xi G C, Peng Y Y, Wan S M, et al. Lithium-assisted synthesis and characterization of crystalline 3C-SiC nanobelts[J]. Journal of Physical Chemistry B, 2004, 108: 20102-20104.
  • 10管英富,郭梦熊.合成β-SiC_w的催化剂熔球机理研究[J].人工晶体学报,1998,27(2):164-168. 被引量:6

二级参考文献17

  • 1王启宝,郭梦熊,安征.稻壳合成β-SiC晶须及生长机理研究[J].化工新型材料,1996,24(2):21-24. 被引量:14
  • 2管英富,硕士学位论文,1996年
  • 3钱苗根,材料科学及其新技术,1986年,428页
  • 4团体著者(译),陶瓷导论,1982年,12页
  • 5Iijima Sumio.Helical microtubles of graphitic carbon.Nature,1991,354:56~58.
  • 6Han Weiqiang,Fan Shoushan,Li Qunqing et al.Continuous synthesis and characterization of silicon carbide nanorods,Chemical physics letter,1997,265:374~378.
  • 7Yang Wen,Araki Hiroshi,Kohyama Akina et al.Growing SiC nanowires on Tyranno-SA SiC fibers.Journal of the American Ceramic Society,2004,87(4):733~735.
  • 8Hu J Q,Lu Q Y,Tang K B et al.Synthesis and characterization of SiC nanowires through a reduction-carburization route,Journal of Physical Chemistry B,2000,104(22):5251~5254.
  • 9Meng G W,Cui Z,Zhang L D et al.Growth and characterization of nanostructured β-SiC via carbothermal reduction of SiO2 xerogels containing carbon nanoparticles,Source:Journal of Crystal Growth,2000,209(4):801~806.
  • 10Tsukuda Satoshi,Seki Shu,Tagawa Seiichi et al.Fabrication of nanowires using high-energy ion beams.Journal of Physical Chemistry B,2004,108(11):3407~3409.

共引文献15

同被引文献12

  • 1Xu J,Zou H,Li H,et al.Influence of Nd3+ substitution on the microstr ucture and electromagnetic properties of barium W-type hexaferrite[J].J.Alloys.Compd,2010,490:552-556.
  • 2Lee C C,Chen D H.Ag nanoshell-induced dual-frequency electromagnetic wave absorption of Ni nanoparticles[J].Appl.Phys.Lett,2007,90:193102-193104.
  • 3Li Y J,Wang R,Qi F M,et al.Preparation,characterization and microwave absorption properties of electroless Ni-Co-P-coated SiC powder[J].Apl.Surf.Sci,2008,254:4708-4715.
  • 4Tang N J,Zhong W,Au C T,et al.Synthesis microwave electromagnetic and microwave absorption properties of twin aarbon nanocoils[J].J.Phys.Chem.C,2008,112:19316-19323.
  • 5Liu J R,Itoh M,Terada M,et al.Enhanced electromagnetic wave abeorption properties of Fe nanowires in gigaherz range[J].Appl.Phys.Lett,2007,91:93101-93103.
  • 6Chen Y.J,Cao M.S,Wang T.H,et al.Microwave absorption properties of ZnO nanowires-polyester composites[J].Appl.Phys.Lett,2004,84:3367-3370.
  • 7Kamlag Y,Goossens A,Colbeck I,et al.Formation of nano SiCparticles by laser-assisted CVD[J].Chem.Vapor.Depos,2003,9(3):125-129.
  • 8Liang C H,Meng G W,Zhang L D,et al.Large-scale synthesis of β-SiC nanowires by using mesoporous silica embedded with Fe nanoparticles[J].Chem.phys.lett,2000,329:323-328.
  • 9Keller N,Pham-Huu C,Ehret G,et al.Synthesis and characterization of medium surface area silicon carbide nanotubes[J].Carbon,2003,41:2131-2139.
  • 10范跃农,龚荣洲.陶瓷吸波材料的研究进展[J].陶瓷学报,2009,30(4):538-541. 被引量:8

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部