期刊文献+

基于有限时间的扇形界方法的量化估计(英文)

Finite-horizon quantized estimation using sector bound approach
原文传递
导出
摘要 研究了具有对数量化器的离散时间系统的有限时间量化估计问题。利用扇形界的方法给出了量化误差,进一步设计了有限时间的量化估计器,使得对于由所有的量化新息给出的量化估计误差都在一个有限界之内,并且使得这个界在范数意义下尽可能的小。最后通过求解一个与量化新息有关的黎卡提方程得到了量化估计器。 This paper is concerned with the finite-horizon filtering estimation problem by using the reductive information of the quantized innovations from the innovations. We consider the case where the quantizer is logarithmic, and an up- per bound of the estimation error covariance is derived for all the quantized innovations. The calculation of the filter in- volves solving a Riccati equation related to the quantized innovations.
作者 魏丽 张焕水 付敏跃 WEI Li;ZHANG Huan-shui;FU Min-yue(School of Control Science and Engineering,Shandong University,Jinan 250061,Shandong,China;School of Electrical Engineering and Computer Science,The University of Newcastle,NSW 2308,Callaghan,Australia)
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2012年第1期55-61,共7页 Journal of Shandong University(Natural Science)
基金 Supported by the Taishan Scholar Construction Engineering by Shandong Government the National Natural Science Foundation for Distinguished Young Scholars of China(60825304) the Major State Basic Research Development Program of China(973 Program)(2009cb320600) Yangtse Rive Scholar Bonus Schemes(31400080963017)
关键词 离散时间系统 对数量化器 量化估计 扇形界 discrete.time system logarithmic quantizer quantized estimation sector bound
  • 相关文献

参考文献15

  • 1ELIA N, MITTER S. Stabilization of linear systems withlimited information [ J ]. IEEE Transactions on Automatic Control, 2001,46(9) : 1384-1400.
  • 2FU M, XIE L. The sector bound approach to quantizedfeedback control[ J ]. IEEE Transactions on Automatic Control, 2005, 50( 11 ) :1698-1711.
  • 3FU M. Linear quadratic gaussian control with quantized feedback[ C ]//Proceeding American Control Conference. Washing- ton: IEEE Computer Society, 2009: 2172-2177.
  • 4FU M, XIE L. Finite-level quantized feedback controlfor linear systems [ J ]. IEEE Transactions on Automatic Control, 2009, 54(5) :1165-1170.
  • 5GAO H, CHEN T. A new approach to quantizedfeedback control systems [ J ]. Automatica, 2008, 44 (2) :534-542.
  • 6CHE Weiwei, YANG Guanghong. Quantized dynamic output feedback H controller design [ C ]//Proceedings of the 26th Chi- nese Control Conference. Washington: IEEE Computer Society, 2007 : 1318-1323.
  • 7QI T, SU W. Tracking performance limitation of a linear MISO unstable system with quantized control signal[C]//Proceed- ings of the 10th International Conference on Control, Automation, Robotics and Vision. Washington: IEEE Computer Society, 2008 : 1424-1429.
  • 8ANDERSON B, MOORE J B. Optimal control: linear quadratic methods[M]. Englewood Cliffs, NJ: Prentice-Hall, 1990.
  • 9RIBEIRO A, GIANNAKIS G, ROUMELIOTIS S. SOI-KF:distributed kalman filteringwith low-cost communications using the Sign of Innovations[J]. IEEE Transactions on Signal Processing, 2006, 54(12) :4782-4795.
  • 10YOU K, XIE L, SUN S, et al. Multiple-level quantized innovation kalman filter[C]// Proceedings of the 17th International Federation of Automatic Control. [S. 1] : [s. n. ], 2008: 1420-1425.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部