期刊文献+

含Hardy位势与临界参数的渐近线性椭圆型方程

Solutions for asymptotically linear elliptic equations involving Hardy potential and critical parameter
原文传递
导出
摘要 考虑一类含Hardy位势与临界参数的渐近线性椭圆型方程。对于一般有界区域Ω,此类方程在H10(Ω)中不存在非平凡解。本文应用Morse理论,在新的Sobolev-Hardy空间中得到了非平凡解的存在性。 A class of asymptotically linear elliptic equations with Hardy potential and critical parameter is considered.For general bounded domain Ω,there is no non-trivial solution in space H10(Ω) for this kind of equation(see reference[1]).The existence of non-trivial solutions are proved in a new Sobolev-Hardy space with the technique of Morse theory.
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2012年第2期14-18,共5页 Journal of Shandong University(Natural Science)
基金 国家自然科学基金资助项目(10801132 11001261)
关键词 HARDY位势 临界参数 渐近线性 MORSE理论 Hardy potential critical parameter asymptotically linear Morse theory
  • 相关文献

参考文献7

  • 1VAZQUEZ J L, ZUAZUA E. The Hardy inequality and the asymptotic behavior of the heat equation with an inverse-square po- tential[J]. J Funct Anal, 2000, 173:103-153.
  • 2ADIMURTHI, ESTEBAN M J. An improved Hardy inequality in W1- p and its applications [J]. Nonlinear Differ Equ Appl, 2005, 12:243-263.
  • 3SHEN Yaotian, YAO Yangxin. Nonlinear elliptic equations with critical potential and critical parameter [J].Proc Roy Soc Ed- inburgh, 2006, 136A: 1041-1051.
  • 4SHEN Yaotian, CHEN Zhihui. Sobolev-Hardy spacee with general weight[J]. J Math Anal Appl, 2006, 320:675-690.
  • 5CORVELLEC J N. Morse theory for continuous functionals [ J]. J Math Anal Appl, 1995, 196:1050-1072.
  • 6CHANG K C. Infinite dimensional Morse theory and multiple solution problem [ M ]//Progess in Nonlinear Diggerential Equa- tions and Their Applications. Boston: Birkhiiuser, 1993.
  • 7ZHANG Yimin, YANG Jun, SHEN Yaotian. Solutions for nonlinear elliptic equations with general weight in Sobolev-Hardy space [J].Proceedings of the American Mathematical Society, 2011, 139 ( 1 ) : 219-230.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部