期刊文献+

剩余格的TL-滤子与TL-同余关系 被引量:3

TL-filters and TL-congruences of residuated lattices
原文传递
导出
摘要 将有界格上的t-模T应用于剩余格的滤子和同余上,提出了剩余格的TL-滤子与TL-同余关系。首先,研究TL-滤子与TL-同余的性质与一些等价刻画。得到了TL-滤子的集合与TL-同余关系的集合是同构的。最后研究了剩余格的商结构与同态定理,这些理论在其他逻辑代数系统中依然成立。 t-norm T of bounded lattices is applied to filters and congruences in residuated lattices,and the concept of TL-filters and TL-congruences of a residuated lattice are introduced.Their properties and some equivalent characterizations are derived.We prove that there is a correspondent bijection between the set of all TL-filters of a residuated lattice and the set of all TL-congruences in that residuated lattice.Finally,quotient residuated lattices and homomorphism theorem are derived.These results and methods still hold in other logical algebraic structures.
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2012年第2期98-103,共6页 Journal of Shandong University(Natural Science)
基金 国家自然科学基金资助项目(60875034) 四川省教育厅科研基金资助项目(11ZB023)
关键词 剩余格 TL-滤子 TL-同余关系 residuated lattices TL-filters TL-congruences
  • 相关文献

参考文献13

  • 1HAJEK P. Metamathematics of fuzzy logic[M]. London: Kluwer Academic Publishers, 1998.
  • 2ESTEVA F, GODO L. Monoidal t-norm based logic: towards to a logic for left-continuous t-norm[J]. Fuzzy Sets Systems, 2001,124:271-288.
  • 3XU Yang, RUAN Da, QIN Keyun, et al. Lattice-valued logic[ M]. Berlin: Springer-Verlag, 2003.
  • 4KONDO M, DUDEK W A. Filter theory of BL-algebras [J]. Soft comput, 2008,12:419-423.
  • 5ZHU Yiquan, XU Yang. On filter theory of residuated lattices[J].Inform Sci, 2010, 180:3614-3632.
  • 6LIU Lianzhen, LI Kaitai. Fuzzy implicative and Boolean filters of R0 algebras[J].Inform Sci, 2005, 171:61-71.
  • 7LIU Lianzhen, LI Kaitai. Fuzzy boolean filters and positive implicative filters of BL-algebras[J]. Fuzzy Sets Systems, 2005, 152:333-348.
  • 8XU Yang, QIN Keyun. On filters of lattice implication algebras [J].J Fuzzy Math, 1993, 1:251-260.
  • 9SCHWEIZER B, SKLAR A. Statistical metric spaces[J]. Pacific Journal of Mathematics, 1960, 10( 1 ) :313-334.
  • 10LEROY B B, CHEON G S, JUN Y B, et al. Triangular normed fuzzification of (implication) filters in lattice implication al- gebras[J]. Kyungpook Math J, 2005(45) :177-189.

二级参考文献3

  • 1何家儒.点式模糊映射及其扩张[J].模糊系统与数学,1988,(1):26-31.
  • 2孟道骥.Fuzzy群[J].模糊数学,1982,(4):49-60.
  • 3孙绍权,谷文祥.区间值Fuzzy域上的Fuzzy代数[J].东北师大学报(自然科学版),1998,30(3):49-53. 被引量:3

共引文献6

同被引文献27

  • 1XU Y,QIN K Y, LIU J, et al. L-valued proposition logicLvpl [ J]. Information Sciences, 1999, 114:205-235.
  • 2XU Y, LIU J, SONG ZM, et al. On semantics of L-val-ued first-order logic Lvft [ J ]. Int J General Systems,2000,29(1) :53-79.
  • 3XU Y, RUAN D, KERRE EE, et al. a-resolution princi-ple based on lattice-valued propositional logic LP ( X)[J]. Inform Sciences,2000,130: 195-223.
  • 4XU Y, RUAN D,KERRE EE, et al. a-resolution princi-ple based on first-order lattice-valued logic LF(X) [J].Information Sciences, 2001, 132:221-239.
  • 5XU Y, RUAN D, QIN K Y, et al. Lattice-valued logic-an alternative approach to treat fuzziness and incompara-bility [M] .Berlin : Springer-Verlag,2003.
  • 6FUCHES L. Pattically odered algebraic aystems [ M ].Oxford ; Pergamon Press,1963.
  • 7DAVEY B A, PRIESTLEY H A. Introduction to latticesand order [ M ]. Cambridge: Cambridge UniversityPress, 2002.
  • 8裴道武.MTL代数的特征定理[J].数学学报(中文版),2007,50(6):1201-1206. 被引量:27
  • 9PAVELKA J.On fuzzy logicⅠ:many-valued rules of inference,Ⅱ:enriched residuated lattice and semantics of propositional calculi,Ⅲ:seman-tical completeness of some many-valued propositional calculi[J].Z Math Logik Grund Math,1979,25:45-52,119-134,447-464.
  • 10HAJEK P.Metamathematics of fuzzy logic[M].Dordrecht:Kluwer Academic Publishers,1998:36-46.

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部