期刊文献+

具有扩散项的环状神经网络同步态分岔与稳定性

Synchronized Bifurcation and Stability Analysis of A Class of Reaction-diffusion Ring Neural Networks
下载PDF
导出
摘要 讨论了一类具有漏泄时滞的反应扩散环状神经网络的同步态Hopf分岔和稳定性问题.以连接权值β作为分岔参数,利用分岔和稳定性理论,给出了此类反应扩散系统同步态Hopf分岔和稳定性条件.同时,还给出了不含扩散项时系统发生Hopf分岔的条件.数值举例验证了理论分析的正确性. The paper deals with the synchronized Hopf bifurcation and stability of a class of reaction- diffusion ring neural networks with leakage time-lags. Determining fl as the bifurcation parameter, based on bifurcation and stability theory, give some criteria for synchronized Hopf bifurcation and stability of this system. Also give the conditions of Hopf bifurcation for the corresponding system without reaction-diffusion. Numerical simulations are given to validate the theoretical analysis.
出处 《合肥学院学报(自然科学版)》 2012年第1期11-15,共5页 Journal of Hefei University :Natural Sciences
基金 国家自然科学基金项目(61174155)资助
关键词 同步态Hopf分岔 同步态稳定性 反应扩散 漏泄时滞 环状神经网络 synchronized Hopf bifurcation synchronized stability reaction-diffusion leakage time- lags ring neural networks
  • 相关文献

参考文献10

  • 1盛洁波,曹爱华,李建军.一类三元环状神经网络周期解的存在性[J].江西理工大学学报,2008,29(6):41-45. 被引量:1
  • 2Pakdaman K, Malta P C, Grotta-Ragazzo C , et al. Transient Oscillations in Continuous Time Excitatory Ring Neural Networks with Delay[ J]. Physcial Review E, 1997,55:3234-3247.
  • 3Wei Junjie, Yuan Yuan. Synchronized Hopf Bifurcation Analysis in A Neural Network Model with Delays [ J ]. J Math Anal Appl, 2005,312: 205-229.
  • 4邹劭芬,王耀南,黄立宏.三元环状神经网络的稳定性[J].数学物理学报(A辑),2010,30(6):1654-1665. 被引量:3
  • 5Gopalsamy K. Stability and Oscillations in Delay Differential Equations of Population Dynamics [ M ]. Dordrecbt: Kluwer Academic, 1992:66-78.
  • 6Li Xiaodi, Fu Xilin, Balasubramaniam P, et al. Existence, Uniqueness and Stability Analysis of Recurrent Neural Networks with Time Delay in the Leakage Term Under Impulsive [ J]. Nonlinear Analysis: Real.World Applications, 2010, 11: 4092-4108.
  • 7廖晓昕,杨叔子,程时杰,沈轶.具有反应扩散的广义神经网络的稳定性[J].中国科学(E辑),2002,32(1):87-94. 被引量:23
  • 8Wang Linshan , Xu Daoyi. Asymptotic Behavior of A Class of Reaction-diffusion Equations with Delays [ J ]. J Math Anal Appl, 2003,281:439 -453.
  • 9王林山,徐道义.变时滞反应扩散Hopfield神经网络的全局指数稳定性[J].中国科学(E辑),2003,33(6):488-495. 被引量:49
  • 10Zhao Hongyong, Wang Kunlun. Dynamical Behaviors of Cohen-Grossberg Neural Networks with Delays and Reaction- diffusion Terms [ J ]. Neurocomputing, 2006,70:536-543.

二级参考文献32

  • 1梁学斌,吴立德.Hopfield型神经网络的全局指数稳定性及其应用[J].中国科学(A辑),1995,25(5):523-532. 被引量:49
  • 2叶其孝.反应扩散方程引论[M].北京:科学出版社,1994..
  • 3Axler S, Gehring F W, Ribet K A. An Introduction to Difference Equations[M]. NewYork : BerlinHeidelberg, 1995.
  • 4Alexander J C, Auchmuty G.Global Bifurcations of Phase-locked Oscillators[J].Arch.Rational Mech.Anal, 1986, 93:253-270.
  • 5Pakdaman K,Malta C P, Grotta-Ragazzo C. Transient OsciUations-time Excitatory Ring Neural Networks Withdelay [J].Physical Review E,1997,55: 3234-3247.
  • 6Othmer H G, Scriven L E.Instability and Dynamics Pattern in Cellular Networks[J].J.Theoret.Biol, 1971,32: 507-537.
  • 7Howard L.Nonliner Oscinations,In:Osicallations in Biology(F.R.Hoppen-steadt,Ed),AMS Lecture Notes In Applied Mathematics[C].1979,17:1-69.
  • 8Guo S J, Huang L H, Zhou Z. Hopf Bifurcating Periodic Orbits in a Ring of Neurons with Delays[J].Phys D,2003, 183(1):19-44.
  • 9Hopfield J J.Neurons with graded response have collective computational properties like those of two-state neurons.Proc Natl Acad Sci (USA),1984,81:3088-3092.
  • 10Anderson P,Gross O,Lomo T,et al.Participation of Inhibitory Interneruons in the Control of Hippocampal Cortical Output//M Brazier,Ed.The Interneuron.Los Angeles:University of California Press,1969.

共引文献59

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部