期刊文献+

Solitary Density Waves for Improved Traffic Flow Model with Variable Brake Distances

Solitary Density Waves for Improved Traffic Flow Model with Variable Brake Distances
原文传递
导出
摘要 Traffic flow model is improved by introducing variable brake distances with varying slopes.Stability of the traffic flow on a gradient is analyzed and the neutral stability condition is obtained.The KdV(Korteweg-de Vries)equation is derived the use of nonlinear analysis and soliton solution is obtained in the meta-stable region.Solitary density waves are reproduced in the numerical simulations.It is found that as uniform headway is less than the safety distance solitary wave exhibits upward form,otherwise it exhibits downward form.In general the numerical results are in good agreement with the analytical results.
出处 《Communications in Theoretical Physics》 SCIE CAS CSCD 2012年第2期301-307,共7页 理论物理通讯(英文版)
基金 Supported by the National Natural Science Foundation of China under Grant No. 61174175 Postdoctoral Science Foundation of China under Grant No. 20100481265 Special Foundation for Postdoctoral Innovation Program of Shandong Province under Grant No. 201102025 the Scientific Project of Jinan City under Grant No. 201118006
关键词 gradient highway solitary waves variable brake distances 制动距离 孤立波 密度波 交通流模型 KdV方程 流量模型 数值模拟 非线性分析
  • 相关文献

参考文献35

  • 1L.A. Pipes, J. Appl. Phys. 24 (1953) 274.
  • 2M.J. Lighthill and G.B: Whitham, Proc. Roy. Soc. A 229 (1955) 281.
  • 3P.I. Richards, Oper. Res. 4 (1956) 42.
  • 4G.F. Newell, J. Oper. Res. Soc. 9 (1961) 209.
  • 5B.S. Kerner and P. Konhauser, Phys. Rev. E 48 (1993) 2335.
  • 6D.A. Kurtze and D.C. Hong, Phys. Rev. E 52 (1995) 218.
  • 7T. Komatsu and S. Sasa, Phys. Rev. E 52 (1995) 5574.
  • 8M. Bando, K. Hasebe, and A. Nakayama, Phys. Rev. E 51 (1995) 1035.
  • 9H. Lenz, C.K. Wagner, and R. Sollacher, Eur. Phys. J. B 7 (1998) 33l.
  • 10T. Nagatani, Phys. Rev. E 60 (1999) 6395.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部