期刊文献+

ML-环

On ML-Rings
下载PDF
导出
摘要 称环R为左ML-环,若环R中任意元a满足a或1-a是左Morphic元.显然,左Morphic环及局部环皆为左ML-环,但反之不然.设{Ri}i∈I是环族.得到的∏i∈IRi是左ML-环当且仅当存在i0∈I使得Ri0是左ML-环且对任意i∈I-{i0},Ri都是左Morphic环.此外,若正整数n≥2且n=∏si=1prii是n的标准因子分解,则Zn∝Zn是左ML-环当且仅当至多一个i使得ri>1当且仅当Zn是VNL-环.同时还构造了一些例子来说明问题. A ring R is called a left ML-ring if a or 1-a is left morphic for every a∈R.Left morphic rings and local rings are left ML-rings but conversely is not true.Let R i(i∈I) be rings.It is shown that ∏ i∈I R i is a left ML-ring if and only if there exists i 0 ∈I such that R i 0 is a left ML-ring and for each i∈I-{ i 0 },R i is a left morphic ring.Moreover,if n≥2 and n = ∏ s i = 1 p r i i is a prime power decomposition of n,then Z n ∝Z n is a left ML-ring if and only if r i 〉 1 for at most one value of i if and only if Z n is a VNL-ring.Some examples were also given.
作者 张丽婷
出处 《信阳师范学院学报(自然科学版)》 CAS 北大核心 2012年第1期5-8,共4页 Journal of Xinyang Normal University(Natural Science Edition)
基金 浙江省新苗人才计划项目(2010R421051)
关键词 左ML-环 左Morphic环 正则性 left ML-rings; left morphic rings; regularity
  • 相关文献

参考文献6

  • 1Nieholson W K, Sanehez Campos E. Rings with the dual of the isomorphism theorem[J]. J Algebra,2004,271 (1) :391-406.
  • 2Osba E A, Henriksen M, Alkam O. Combining local and Von Neumann regular rings[J]. Communications in Algebra,2004,32(7) :2639- 2653.
  • 3Chen J L, Zhou Y. Morphic rings as trivial extenstions [J]. Glasgow Math J,2005,47:139-148.
  • 4张丽婷.关于n-morphic环的一些研究(英文)[J].杭州师范大学学报(自然科学版),2009,8(6):419-425. 被引量:1
  • 5Chen J L, Li Y.L, Zhou Y Q. Constructing morphic rings[ C]//Advance in Ring Theory-proceedings of the 4th China-Japan-Korea International Conference. World Sci Publ,2005:26-32.
  • 6张丽婷.子环扩张的morphic性质(英文)[J].杭州师范大学学报(自然科学版),2011,10(2):109-113. 被引量:2

二级参考文献15

  • 1Huang Qinghe, Chen Jianlong. π-Morphic Rings[J]. Kyungpook Math. J, 2007,47:363-372.
  • 2Xu Xiuling, Chu Maoquan. On generalization of morphic Rings[J]. Journal of Anhui Normal University: Science Edition,2007,31(6) : 522-524.
  • 3Nicholson W K. , Sanchez Campos E. Rings with the dual of the isomorphism theorem[J]. J. Algebra,2004,271(1):391-406.
  • 4Nicholson W K. , Sanchez Campos E. Principal rings with the dual of the isomorphism theorem[J]. Glasgow Math. J,2004,46(1) :181- 191.
  • 5Chen Jianlong, Zhou Yiqiang. Morphic rings as trivial extensions[J]. Glasgow Math. J,2005,47 : 139-148.
  • 6Nicholson W K, Sanchez Campos E. Morphic modules[JJ. Comm. Algebra,2005,33(8) : 2629-2647.
  • 7Lee Tsiu-Kwen, Zhou Yiqiang. Morphic rings and unit regular rings[J]. Journal of Pure and Applied Algebra,2007,210(2):501-510.
  • 8Nicholson W K, Sdnchez Camp6s E. Rings with the dual of the isomorphism theorem[J]. J Algebra,2004,271(1):391-406. Journal of Pure and Applied Algebra,2007,210(2) :501-510.
  • 9Chen Jianlong, Zhou Yiqiang. Morphie rings as trivial extensions[J]. Glasg Math J,2005,47(1) : 139-148.
  • 10Chen Jianlong, Li Yuanlin, Zhou Yiqiang. Constructing morphic rings[C]//Advance in Ring Theory, Najing: Haekensack,2005:26 32.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部