期刊文献+

带脉冲免疫和时滞的传染病模型分析 被引量:1

Analysis of an Epidemic Model with Impulsive Vaccination and Delay
下载PDF
导出
摘要 研究一类带脉冲免疫和时滞的传染病模型.运用脉冲微分方程和积分方程的理论和方法,得到了系统的无病周期解,并证明了当阈值小于1即R*<1时,系统的无病周期解是全局吸引的. An epidemic model with impulsive vaccination and delay was described. The explicit formula of the disease-free periodic solution was obtained by using the theory and the method of impulsive differential equation and integral equation. The results demonstrated that the disease-free periodic solution is a global attractor if R*〈1.
出处 《信阳师范学院学报(自然科学版)》 CAS 北大核心 2012年第1期20-23,共4页 Journal of Xinyang Normal University(Natural Science Edition)
基金 国家自然科学基金资助项目(10771179)
关键词 脉冲免疫 时滞 全局吸引 impulsive vaccination; delay; global attractor
  • 相关文献

参考文献7

  • 1王霞,江晓武.一类具有非线性脉冲接种的时滞SIR模型分析(英文)[J].信阳师范学院学报(自然科学版),2009,22(3):325-328. 被引量:4
  • 2Tang s Y, Chen L S. The periodic-prey Loterra- Volterra model with impulsive effect [ J ]. Mech Medi Biol, 2002, 2:267 -296.
  • 3Xiang D J, Liu B. Global attractivity in deley differential equations with impusive effect[ J]. Biomath, 2003, 2:146-158.
  • 4Feng Z, Innelli M, Miller F A. A two-strain TB model with age of infection[J]. SIAM J Appl Math, 2002, 62:1634-1656.
  • 5Martcheva M, Thieme H R. Progression age enchanced backward bifurcation in an epidemic model with super-infection[J]. J Math Biol, 2003, 46:385-424.
  • 6Weeb G. Theory of nonlinear age-dependent population dynamics [ M ]. New York: Marcel Dekker, 1985.
  • 7Bainov D D, Simeonov P S. Impulsive differential equations:periodic solutions and applications[ M]. New York:Longman Scientific and Technical, 1993.

二级参考文献1

  • 1Boris Shulgin,Lewi Stone,Zvia Agur. Pulse vaccination strategy in the SIR epidemic model[J] 1998,Bulletin of Mathematical Biology(6):1123~1148

共引文献3

同被引文献19

  • 1庞国萍,陈兰荪.具饱和传染率的脉冲免疫接种SIRS模型[J].系统科学与数学,2007,27(4):563-572. 被引量:25
  • 2Gao S J, Chen L S, Teng Z D. Pulse vaccination of an SEIR epidemic model with time delay[J]. Nonlinear Anal:RWA,2008, 9 C 2) :599 - 607.
  • 3Hofbauer J, Sigmund K. Evolutionaly Games and Populatiion Dynamics[ M ]. Cambridge :Cambridge University, 1998.
  • 4Pei Y Z, Liu S Y, Gao S J, et al. A delayed SEIQR epidemic model with pulse vaccination and the quarantine measure [ J ]. Comput Math Appl,2009,58( 1 ) :135 - 145.
  • 5Zliang S W, Wang F Y, Chen L S. A food chain system with density - dependent birth rate and impulsive perturbations [ J l- Ady Complex Systems, 2006,9 (3) : 1 - 14.
  • 6Hethcote H, Ma Z E, Liao S B. Effects of quarantine in six endemic models for infectious diseases[ J ]. Math Biosciences,2002, 180(1/2) :141 - 160.
  • 7Donofrio A. Stability properties of pulse vaccination strategy, in SEIR epidemic model[ J]. Math Biosciences ,2002,179( 1 ) :57 -72.
  • 8Zhou Y C, Liu H W. Stability of periodic solution for an SIS model with pulse vaccination [ J ]. Math Comput Model, 2003, 38(3) :299 -308.
  • 9杨志春.Volterra型脉冲积分微分方程解的存在性和稳定性[J].重庆师范大学学报(自然科学版),2008,25(1):1-4. 被引量:9
  • 10邵远夫,李培峦.一类脉冲延滞微分方程正周期解存在的充分条件[J].四川师范大学学报(自然科学版),2008,31(5):549-553. 被引量:6

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部