期刊文献+

高余维平均曲率流在第一奇异时间处的平均曲率

Mean Curvature at the First Singular Time of the Mean Curvature Flow in Higher Codimension
下载PDF
导出
摘要 考虑沿平均曲率向量移动的一族光滑浸入X(.,t):Mm→Rn,满足tX(x,t)=H(x,t),t∈[0,T).证明了:在第一奇异时间T处,若奇异点为第一型的,则平均曲率在T处爆破. A family of smooth immersions X(·,t):Mm→Rn of submanifolds in Rn moving by the mean curvature vector /tX(x,t)=H(x,t) for t∈[0,T) was considered.The mean curvature blows up at the first singular time T if all the singularities are of type I.
出处 《信阳师范学院学报(自然科学版)》 CAS 北大核心 2012年第1期31-33,共3页 Journal of Xinyang Normal University(Natural Science Edition)
基金 浙江省教育厅科研项目(Y200909563)
关键词 曲率流 奇异点 单调公式 平均曲率 curvature flow; singularity; monotone formula
  • 相关文献

参考文献9

  • 1Andrews B. Contraction of convex hypersu(faces in Euclidean space[ J]. Calc Vat Partial Differential Equations, 1994,2 (2) :151-171.
  • 2Chow B. Deforming convex hypersu-faces by the nth root of the Gausssian curvature[ J]. J Differential Geom, 1985,22:117-138.
  • 3Chow B. Deforming hypersurfaces by the square root of the scalar curvature [l]. Invent Math, 2987,87:63-82.
  • 4Huisken G. Flow by mean curvature of convex surfaces into spheres [ J ]. J Differential Geom, 1984,20 (1) :237-266.
  • 5Schntirer 0 C. Su(faces contracting with speed[ J]. J Differential Geom, 2005,71 (3) :347-363.
  • 6Schulze F. Evolution of convex hypersttsCaces by powers of the mean curvature [ J ]. Math Z, 2005,251 ( 4 ) :721-733.
  • 7Huisken G. Asymptotic behavior for singularities of the mean curvature flow [ J ]. J Differential Geom, 1990,31 ( 1 ) :285 -299.
  • 8Le N Q, Sesum N. The mean curvature at the first singular time of the mean curvature flow[ J ]. Annales de l' Institut Henri Poincare (C) Non Linear Analysis, 2010,27(6) :1441-1459.
  • 9White B. A local regularity theorem for mean curvature flow[ J]. Ann of Math, 2005,161 (3) :1487-1519.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部