期刊文献+

Construction of a class of multivariate compactly supported wavelet bases for L2(Rd)

Construction of a class of multivariate compactly supported wavelet bases for L2(Rd)
原文传递
导出
摘要 In this paper, for a given d x d we investigate the compactly supported expansive matrix M with | det M| = 2, M-wavelets for L^2(R^d). Starting with N a pair of compactly supported refinable functions and satisfying a mild condition, we obtain an explicit construction of a compactly supported wavelet p such that {2J/2b(Mj -k):j E Z, k c gg} forms a Riesz basis for L2(Ra). The (anti-)symmetry of such ~b is studied, and some examples are also provided. In this paper, for a given d x d we investigate the compactly supported expansive matrix M with | det M| = 2, M-wavelets for L^2(R^d). Starting with N a pair of compactly supported refinable functions and satisfying a mild condition, we obtain an explicit construction of a compactly supported wavelet p such that {2J/2b(Mj -k):j E Z, k c gg} forms a Riesz basis for L2(Ra). The (anti-)symmetry of such ~b is studied, and some examples are also provided.
出处 《Frontiers of Mathematics in China》 SCIE CSCD 2012年第1期177-195,共19页 中国高等学校学术文摘·数学(英文)
关键词 Riesz basis WAVELET refinable function Riesz basis, wavelet, refinable function
  • 相关文献

参考文献20

  • 1de Boor C,DeVore R A,Ron A. On the construction of multivariate (pre)wavelets[J].Constructive Approximation,1993,(2-3):123-166.
  • 2Bownik M. Intersection of dilates of shift-invariant spaces[J].Proceedings of the American Mathematical Society,2009,(02):563-572.doi:10.1090/S0002-9939-08-09682-2.
  • 3Chui C K. An Introduction to Wavelets[M].Boston:academic Press,1992.
  • 4Chui C K,Wang J Z. A general framework of compactly supported splines and wavelets[J].Journal of Approximation Theory,1992,(03):263-304.
  • 5Chui C K,Wang J Z. On compactly supported spline wavelets and a duality principle[J].Transactions of the American Mathematical Society,1992,(02):903-915.
  • 6Cohen A,Daubechies I. A stability criterion for biorthogonal wavelet bases and their related subband coding scheme[J].Duke Mathematical Journal,1992,(02):313-335.
  • 7Cohen A,Daubechies I,Feauveau J C. Biorthogonal bases of compactly supported wavelets[J].Communications on Pure and Applied Mathematics,1992,(05):485-560.
  • 8Eugenio H,Weiss G. A First Course on Wavelets[M].Boca Raton:crc Press,1996.
  • 9Huang Y D,Yang S Z,Cheng Z X. The construction of a class of trivariate nonseparable compactly supported wavelets[J].Int J Wavelets Multiresolut Inf Process,2009,(03):255-267.
  • 10Jia R Q. Approximation properties of multivariate wavelets[J].Mathematics of Computation,1998,(222):647-665.doi:10.1090/S0025-5718-98-00925-9.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部