期刊文献+

基于DEM的埋管鼓泡流化床内颗粒运动特性模拟 被引量:3

DEM simulation of the behavior of particles in a spout-fluid bed with immersed tubes
原文传递
导出
摘要 该文采用离散单元法(DEM)对水平埋管的鼓泡流化床内颗粒流化过程进行了数值模拟研究。DEM方法通过求解Newton方程来模拟颗粒的运动过程,气相仍采用连续流方法模拟。因此,DEM方法能够获得颗粒尺度量级的详细结果。通过模拟不同埋管布置方式下流化床内密相区颗粒流化过程,研究了埋管布置方式对于鼓泡流化床内的颗粒运动的影响。结果表明:埋管布置方式会改变床层有效流通面积和埋管对颗粒的阻碍作用等,从而影响流化床内的颗粒群和气泡形态。埋管数量越多,颗粒与埋管由于相互作用而消耗的能量越大,平均颗粒速度和颗粒温度值越低。不同的埋管布置方式会导致颗粒混合速率的差异,增加埋管数量会降低颗粒混合程度。 The discrete element method(DEM) was used to study the behavior of particles in a spout-fluid bed with horizontal immersed tubes.In the DEM simulations,the particles were individually traced by solving Newton's equations of motion,while the fluid phase was treated as a continuum.Therefore,the DEM simulation provides particle level information.The effect of tube arrangement on the particle and bubble behavior in the packed bed region was investigated by varying the tube arrangement.The simulations show that the tube arrangement greatly influences the kinetic behavior of the particles.The effective flow area and interaction forces between the immersed tubes and particles varied with different tube arrangements.More immersed tubes gave lower averaged particle velocities and temperatures.The particle mixing rate also differed for different immersed tube arrangements.The particle mixing was reduced by more immersed tubes.
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第1期72-76,共5页 Journal of Tsinghua University(Science and Technology)
关键词 鼓泡流化床 离散单元法(DEM) 埋管布置方式 颗粒运动特性 spout-fluid bed discrete element method(DEM) immersed tube arrangement kinetic behavior of particles
  • 相关文献

参考文献2

二级参考文献29

  • 1Ergun,S.(1952).Fluid flow through packed columns.Chemical Engineering Progress,48(2),89-94.
  • 2Fan,L.-S.,& Zhu,C.(1998).Principles of gas-solid flows.New York:Cambridge University Press.
  • 3Garcia-Ocha,F.,Romero,A.,Villar,J.C.,& Bello,A.(1989).A study of segregation in a gas-solid fluidized bed:Particles of different density.Powder Technology,58(3),169-174.
  • 4Grace,J.R.,& Sun,G.(1991).Influence of particle size distribution on the performance of fluidized bed reactors.Canadian Journal of Chemical Engineering,69,1126-1134.
  • 5Gupta,C.K.,& Sathiyamurthy,D.(1999).Fluid bed technology in materials processing.Florida:CRC Press.
  • 6Horio,M.,Liu,J.,& Muchi,I.(1982).Particle behavior in the fluidized-bed grid zone,bubbling zone and freeboard.In K.Mooson & K.Daizo (Eds.),Fluidization science and technology (pp.112-123).Beijing:Science Press.
  • 7Kaneko,Y.,Shiojima,T.,& Horio,M.(1999).DEM simulation of fluidized beds for gas-phase olefin polymerization.Chemical Engineering Science,54(24),5809-5821.
  • 8Kunni,D.,& Levenspiel,O.(1991).Fluidization engineering.Boston:Butterworth-Heinemann.
  • 9Kuwagi,K.,& Horio,M.(2002).A numerical study on agglomerate formation in a fluidized bed of fine cohesive particles.Chemical Engineering Science,57(22-23),4737-4744.
  • 10Kuwagi,K.,Mikami,T.,& Horio,M.(2000).Numerical simulation of metallic solid bridging particles in a fluidized bed at high temperature.Powder Technology,109(1-3),27-40.

共引文献3

同被引文献20

  • 1Anderson T B, Jackson R. A fluid mechanical description of fluidized beds [J]. I and EC Fundamen-tals, 1967, 6: 527-539.
  • 2Tsuji Y, Kawaguchi T. Discrete particle simulation of two dimensional fluidized bed[J].Powder Technol- ogy, 1993, 77: 79-87.
  • 3Ren B, Zhong W, Jiang X, et al. Numerical simula- tion of spouting of cylindroid particles in a spouted bed[J]. Canadian Journal or Chemical Engineering, 2014, 92(5) :928-934.
  • 4Peng Z B, Doroodchi E, Luo C M, etal. Influence of void fraction calculation on fidelity of CFD-DEM sim- ulation of gas-solid bubbling fluidized beds [J]. AIChE Journal, 2014, 60(6): 2000-2018.
  • 5Zhou H, Mo G Y, Zhao J P, etal. DEM-CFD simu- lation of the particle dispersion in a gas-solid two- phase flow for a fuel-rich/leanburner[J].FueL, 2011, 90(4): 1584-1590.
  • 6Pandit J K, Wang X S, Rhodes M J. A DEM study of bubble formation in Group B fluidized beds with and without cohesive inter-particleforces[J]. Chemi- cal Engineering Science, 2007. 62(1-2) : 159-166.
  • 7Mousel J A, Marshall J S. Aggregate growth and breakup in particulate suspension flow through a mi- cro-nozzle [J]. Microfluidics and Nanofluidics, 2010, 8(2) :171-186.
  • 8Rowe P N, Partridge B A. Gas flow through bubbles in fluidized bed [J]. Chemical Engineering, 1963, 18: 511-524.
  • 9Geldart D. Types of gas fluidization [ J ]. Powder Technology, 1973, 7(5): 285-92.
  • 10Davidson J F, Clift R, Harrison D. Fluidized parti cles [M]. London: Cambridge, University Press, 1963.

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部