期刊文献+

Effect of protein molecular weight on the mass transfer in protein mixing

Effect of protein molecular weight on the mass transfer in protein mixing
原文传递
导出
摘要 The mixing of protein solutions with that of precipitating agents is very important in protein crystallization experiments. In this work, the interferometry images were recorded during the mixing of two proteins with different molecular weights: lysozyme of -14.6 kDa, trypsin of -23.3 kDa and pepsin of -34.8 kDa were placed in a Mach-Zehnder interferometer. The protein mo- lecular weight dependence on the competition of the transport process and kinetics at the interface was studied. The concentra- tion profiles of protein solutions were calculated to analyze the mass transfer during the mixing process. It was observed that the mass transfer process is more efficient during the mixing of proteins with higher molecular weights. In addition, the more rapid concentration changes above the interface suggest that convection may dominate the diffusion. The phenomenon of con- vection is higher in the protein solutions with higher molecular weight. 与猛抛的混合蛋白质答案代理人在蛋白质结晶化实验是很重要的。在这个工作, interferometry 图象在与不同分子的重量混合二蛋白质期间被记录:14.6 kDa 的溶解酵素, 34.8 kDa 的 23.3 kDa 和胃朊酶的胰岛素被放在 Mach-Zehnder 干涉仪。蛋白质在接口的运输进程和动力学的比赛上的分子的重量依赖被学习。蛋白质答案的集中侧面被计算在混合过程期间分析集体转移。集体转移过程在与更高分子的重量混合蛋白质期间是更有效的,这被观察。另外,在接口上面的更快速的集中变化建议那传送对流可以统治散开。传送对流的现象在有更高分子的重量的蛋白质答案是更高的。
机构地区 Xi An Jiao Tong Univ
出处 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2012年第3期470-476,共7页 中国科学:物理学、力学、天文学(英文版)
基金 supported by the National Natural Science Foundation of China (Grant No. 51076128) the Doctoral Fund of Ministry of Education of China (Grant No. 2009021110008)
关键词 mass transfer protein mixing INTERFACE DIFFUSION Mach-Zehnder interferometer 蛋白质分子量 混合过程 传质过程 Mach-Zehnder干涉仪 蛋白质溶液 界面动力学 高分子量 kDa
  • 相关文献

参考文献1

二级参考文献31

  • 1J. D'Hernoncourt, S. Kalliadasis, and A. De Wit, J. Chem. Phys. 123, 234503 (2005).
  • 2D. A. Bratsun, Y. Shi, K. Eckert, and A. De Wit, Europhys. Lett. 69, 746 (2005).
  • 3K. Eckert and A. Grahn, Phys. Rev. Lett. 82, 4436 (1999).
  • 4K. Eckert, M. Acker, and Y. Shi, Phys. Fluids 16, 385 (2004).
  • 5B. F. Edwards, J. W. Wilder, and K. Showalter, Phys. Rev. A 43, 749 (1991).
  • 6D. A. Vasquez, B. F. Edwards, and J. W. Wilder, Phys. Fluids 7, 2513 (1995).
  • 7T. S. Sherwood and J. C. Wei, Ind. Eng. Chem. 49, 1030 (1957).
  • 8S. A. Ermakov, A. A. Ermakov, O. N. Chupakhin, and V. V. Vaissov, Chem. Eng. J. 84, 321 (2001).
  • 9E. Ruckenstein and C. Berbente, Chem. Eng. Sci. 19, 329 (1964).
  • 10A. Sanfeld and A. Steinchen, Biophys. Chem. 3, 99 (1975).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部