期刊文献+

数据驱动的风能转换系统最优控制 被引量:2

Data-Based Optimal Control for Wind Energy Conversion System
下载PDF
导出
摘要 风能转换系统具有很强的非线性,为了解决风能转换系统的建模困难问题,实现额定风速以下风能捕获率的最大化,根据数据驱动控制理论,在风能转换系统中采用数据驱动的最优控制方法。利用风能转换系统的输入输出数据获取马尔可夫参数,并构造一个数据驱动的控制器状态观测器,通过差分R iccati方程的闭合解设计出最优反馈控制器。仿真结果表明,采用数据驱动的最优控制方法,功率系数和叶尖速比都可以维持在最优值附近,有效地实现额定风速以下风能转换系统的最大风能捕获。 Wind energy conversion system(WECS) is nonlinear.In order to deal with the difficulties in modeling of WECS and maximize the wind energy capture ratio below the rated wind speed,the data-based optimal control is adopted in WECS based on data-driven control theory.The Markov parameters are obtained and a data-driven controller state observer is constructed by using input and output data of WECS.Then an optimal feedback controller is designed through the closed form of difference Riccati equation.Simulation results indicate that under the rated wind,the data-driven optimal control can effectively implement maximum energy capture by mantaining the power coefficient and the tip speed ratio around their optimal values.
出处 《南京航空航天大学学报》 EI CAS CSCD 北大核心 2012年第1期129-133,共5页 Journal of Nanjing University of Aeronautics & Astronautics
基金 高等学校博士学科点专项科研基金(优先发展领域)(20110093130001)资助项目 教育部新世纪优秀人才支持计划(NCET-10-0437)资助项目
关键词 风能转换系统 数据驱动 最优控制 马尔可夫参数 wind energy conversion system data-driven optimal control Markov parameters
  • 相关文献

参考文献10

  • 1尹明,葛旭波,王成山,张义斌,刘国平,靳晓凌.我国风电大规模开发相关问题探讨[J].中国电力,2010,43(3):59-62. 被引量:30
  • 2Bianchi F D, Battista H D, Mantz R J. Wind turbine control systems [M]. London: Springer, 2007: 65- 72.
  • 3Tang C Y, Guo Y, Jiang J N. Nonlinear dual-mode control of variable-speed wind turbines with doubly fed induction generators[J]. Control System Tech- nology, 2010, 18(6): 1-13.
  • 4张先勇,吴捷,杨金明,舒杰.额定风速以上风力发电机组的恒功率H∞鲁棒控制[J].控制理论与应用,2008,25(2):321-324. 被引量:33
  • 5侯忠生,许建新.数据驱动控制理论及方法的回顾和展望[J].自动化学报,2009,35(6):650-667. 被引量:218
  • 6Barlow J S. Data-based predictive control with mul- tirate prediction step[C]//Ameriean Control Confer- enee, NewYork: IEEE, 2010: 5513-5519.
  • 7Markovsky I, Rapisarda P. Data-driven simulation and control [J]. International Journal of Control, 2008, 81(12): 1946-1956.
  • 8Aangenent W, de Jager B, Steinbuch M. Data-based optimal control[C]//American Control Conference. NewYork: IEEE, 2005.. 1460-1465.
  • 9Li Pingkang, Li Bei, Du Xiuxi. A nonparametric model-based LQG control algorithm[C]//Proceed- ings of the 6th World Congress on Intelligent Con- trol and Automation, NewYork: IEEE, 2006.. 596- 600.
  • 10Munteanu I, Brarcu A I, Antonic C N, et al. Opti- mal control of wind energy systems[M]. London: Springer, 2008: 140-157.

二级参考文献19

  • 1许建新,侯忠生.学习控制的现状与展望[J].自动化学报,2005,31(6):943-955. 被引量:77
  • 2侯忠生.无模型自适应控制的现状与展望[J].控制理论与应用,2006,23(4):586-592. 被引量:130
  • 3王琦,陈小虎,纪延超,李枫.基于双同步坐标的无刷双馈风力发电系统的最大风能追踪控制[J].电网技术,2007,31(3):82-87. 被引量:33
  • 4李俊峰,高虎,王仲颖,等.2008中国风电发展报告[M].北京:中国环境科学出版社,2008.
  • 5World Wind Energy Association. 120 Gigawatt of wind turbines globally contribute to secure electricity generation [ EB/OL ]. [ 2009-01 -09 ]. http://www.wwindea.org/home/index2.php?option =com_content &do_pdf=1 &id=223.
  • 6U.S. Department of Energy. 20% energy by 2050: increasing wind energy' s contribution to U.S. electricity supply [ EB/OL ]. [ 2009-01 - 10 ]. http://www 1 .eere.energy.gov/windandhydro/pdfs/41869.pdf.
  • 7Chinese Wind Energy Association. Global installed wind power capacity (MW)-regional distribution [EB/OL]. [2009-02-04]. http: //cwea.org.cn/upload/2009020301.pdf.
  • 8酒泉地区千万千万级风电基地建设工作会议在京召开[EB/OL].[2008-02-28].http://nyj.ndrc.gov.cn/gjkzsnydh/t20080804_229496.html.
  • 9HOLTTINEN H, LEMSTR?M B, MEIBOM P, et al. Design and operation of power systems with large amounts of wind power State- of-the-art report [EB/OL]. [ 2009-07-08 ]. http://www.ieawind.org / AnnexXXV/Publications/W82.pdf.
  • 10AHLSTROM M, JONES L, ZAVADIL R, et al. The future of wind forecasting and utility operations [J ]. IEEE Power Energy Magazine, 2005, 3(6): 57-64.

共引文献277

同被引文献18

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部