期刊文献+

一种模拟视觉机制的图像分割模型 被引量:1

A Visual Mechanism Inspired Model for Image Segmentation
下载PDF
导出
摘要 提出一个小波域多尺度马尔柯夫随机场模型用于模拟视觉系统在图像分割中的若干功能。针对人类视觉系统具有特征检测器、等级层次性、双向连接性、学习机制等功能,对输入场景,该模型用小波变换提供该场景图像的稀疏表示,模拟特征检测器功能;用金字塔结构模拟等级层次性;用两类信息流模拟双向连接性,分别刻画自底向上的输入图像特征提取过程以及自顶向下的反馈过程;用迭代过程模拟学习机制;采用多尺度马尔柯夫随机场模型实现图像分割。实验表明,该模型对真实采集到的不同类型的生物医学图像进行分割,取得优于一些传统分割算法的结果。 In this paper,a multiscale Markov random field(MRF) model in the wavelet domain was proposed by simulating several image segmentation functions of the visual system.Human visual system(HVS) has feature detection ability,hierarchy,bidirectional connection,and self-learning mechanisms.For an input scene,our model provided its sparse representations using wavelet transforms(WT) to mimic the feature detection ability,and used pyramid framework to mimic hierarchy.In the framework of the model,there were two information flows that were used to mimic bidirectional connection,i.e.,a bottom-up procedure to extract input features and a top-down procedure to provide feedback controls.In addition,the iteration in procession was the simulation of self-learning mechanisms,and the multiscale MRF was the tool for image segmentation.The quality of the framework was tested and compared to some classic image segmentation algorithms.Results showed that the proposed model obtained improved data than those obtained by classic image segmentation algorithms.
出处 《中国生物医学工程学报》 CAS CSCD 北大核心 2012年第1期32-38,共7页 Chinese Journal of Biomedical Engineering
基金 国家高技术研究发展计划(863计划)(2007CB311001) 国家自然科学基金重大研究计划重点项目(90820301) 国家自然科学基金(61075109)
关键词 小波变换 多尺度 马尔柯夫随机场 视觉机制 图像分割 wavelet transforms multiscale markov random field visual mechanism image segmentation
  • 相关文献

参考文献31

  • 1徐科.神经生物学纲要[M].北京:科学出版社2005:209.
  • 2Shapiro L G,Stockman G C.计算机视觉[M].北京:机械工业出版社,2005
  • 3邱芳土,李朝义.同心圆感受野去抑制特性的数学模拟[J].生物物理学报,1995,11(2):214-220. 被引量:15
  • 4Ghosh K,Sarkar S,Bhaumik K.Understanding image structure from a new multi-scale representation of higher order derivative filters[J].Image Vision Comput,2007,25 (8):1228-1238.
  • 5Kayser C,Einhauser W, Kongig P. Processing of complex stimuli and nature scenes in the visual cortex[J]. Current Opinion in Neurobiol,2004,14 (4):468-473.
  • 6Kayser C, Einhauser W, Kongig P. Responses to Natural Secenes in Cat V1[J].J Neurophysiol,2003,90 (3):1910-1920.
  • 7Munder S,Gavrila DM.An experimental study on pedestrian classification[J].IEEE Trans Pattern Anal Mach Intell,2006,28(11):1863-1868.
  • 8Wohler C,Anlauf JK.An adaptable time-delay eural-network algorithm for image sequence analysis[J].IEEE Trans Neural Networ,1999,10(6):1531-1536.
  • 9Perez CA, Salinas CA, etc. Genetic design of biologically inspired receptive fields for neural pattern recognition[J].IEEE Trans Syst Man Cy B,2003,33(2):258-270.
  • 10Bell AJ,Sejnowski TJ. The " independent components" of natural scenes are edge filters[J].Vision Res,1997,37 (23):3327-3338.

二级参考文献30

  • 1赵银娣,张良培,李平湘.广义马尔可夫随机场及其在多光谱纹理影像分类中的应用[J].遥感学报,2006,10(1):123-129. 被引量:13
  • 2Bouman C A, Shapiro M. A Multiscale Random Field Model for Bayesian Image Segmentation[J]. IEEE TRransactions on Image Processing, 1994, 3 (2) :162-178
  • 3Choi H, Baraniuk R G. Muhiscale Image Segmentation Using Wavelet-Domain Hidden Markov Models[J]. IEEE Transactions on Image Processing, 2001, 10(9):1 309-1 321
  • 4Dasgupta P, Chakrakbarti P P, de Sarkar S C. Multiobjective Heuristic Search[M]. London: Academic Press, 1999
  • 5李朝义,Vision Res,1992年,32卷,219页
  • 6李朝义,Vision Res,1991年,31卷,1529页
  • 7李朝义,科学,1991年,43卷,3期,211页
  • 8李朝义,Exp Brain Res,1987年,67卷,16页
  • 9顾凡及,侧抑制网络中的信息处理,1983年
  • 10李朝义,Vision.Structure and Function

共引文献57

同被引文献1

引证文献1

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部