期刊文献+

基于伽辽金有限元法的磁感应断层成像正问题仿真 被引量:3

Forward Problem Simulation in Magnetic Induction Tomography Based on Galerkin Finite Element Method
下载PDF
导出
摘要 磁感应断层成像(MIT)的正问题计算为系统建模和研究提供了重要依据,由于MIT中涡流场微分方程的非正定性,增加了MIT正问题计算的复杂度。本研究提出一种基于伽辽金有限元法的正问题求解方法,该方法对微分算子无特殊要求,解决了涡流场微分方程非正定性的问题,利用该方法对成像区域内的磁场分布、涡流强度以及检测线圈的相位差等参数进行了分析。计算结果表明,成像区域内磁感应强度的幅值主要由实部决定,而虚部对场域内电导率的变化较为敏感,因此,可以用磁感应强度的虚部进行图像重建。同时,与目标导体的位置越近、激励线圈的位置越远,检测线圈中的相位差值越大;同一位置的目标导体,检测线圈的相位差与电导率大小成线性关系。经理论推导与仿真实验的验证,所采用的伽辽金有限元法能够有效求解MIT正问题,进而为MIT硬件系统的测量及重建算法的研究提供实验参考和理论依据。 Forward problem solution in magnetic induction tomography(MIT) can provide significant basis to system modeling,because MIT differential equation is non-positive-definite,which increases calculative complexity.The paper designed a method based on Galerkin Finite Element(GFE) that had no special requirement about differential operator.The GFE solved the non-positive-definite problem of eddy current field,the method was used to analyze accurately the magnetic field distribution,eddy current intensity and phase shift in detecting coils.The result demonstrated that magnetic flux density amplitude was mainly decided by real part and imaginary was sensitive to conductivity change,thus the imaginary of magnetic flux density could be used to reconstruct image.At the same time,the phase shift in the detecting coil was investigated.The result showed that the phase shift of detecting coil increased as it closed to object or was far away from exciting coil.To the same position of the object,the phase shift in detecting coil was linear to the conductivity.The theoretical derivation and the simulated experiment verified that the GFE method used in the paper was effective to solve the MIT forward problem,and further more it could provide the experiment reference and theoretical verification to MIT hardware system measurement and reconstruction algorithm study.
出处 《中国生物医学工程学报》 CAS CSCD 北大核心 2012年第1期53-58,共6页 Chinese Journal of Biomedical Engineering
基金 国家自然科学基金(50907041) 高等学校博士学科点专项科研基金(20092102120002) 教育部春晖计划(Z2006-1-11002) 辽宁省教育厅项目(2009A553)
关键词 磁感应断层成像 正问题 涡流场 伽辽金有限元法 magnetic induction tomography forward problem eddy current field Galerkin finite element method
  • 相关文献

参考文献13

  • 1Griffiths H. Magnetic induction tomography[J].Meas Sci Technol,2001,12(8):1126-1131.
  • 2Johannes N, Ewald F, Sabine H. Contactless impedance measurement by magnetic induction-a possible method for investigation of brain impedance[J].Physiol Meas,1993,14(4):463-471.
  • 3Morris A, Giffiths H, Gough W. A numerical model for induction tomographic measurements in biological tissues[J].Physiol Meas,2001,22(1):113-119.
  • 4王聪,董秀珍,秦明新.电磁感应断面成像研究的关键问题[J].CT理论与应用研究(中英文),2003,12(3):17-21. 被引量:3
  • 5刘国强,霍小林.层状生物组织磁感应成像[J].中国医学物理学杂志,2003,20(1):59-61. 被引量:3
  • 6Merwa R,Hollaus K,Brandsttter B,et al..Numerical solution of the general 3D eddy current problem for magnetic induction tomography (spectroscopy)[J].Physiol Meas,2003,24:545-554.
  • 7Griffiths H, Stewart WR, Gough W. Magnetic induction tomography-A measuring system for biological tissues[J].Ann NY Acad Sci,1999,873:335-345.
  • 8Hermann S,Pere R,Marcos P,et al.Sensitivity maps for lowcontrast perturbations within conducting background in magnetic induction tomography[J].Physiol Meas,2002,23:195-202.
  • 9Robert M,Karl H,Bernhard B,et al..Numerical solution of the general 3D eddy current problem for magnetic induction tomograph(spectroscopy)[J].Physiol Meas,2003 ; 24:545-554.
  • 10刘国强,王涛,蒙萌,王浩.用棱单元方法求解磁感应成像的正问题[J].中国生物医学工程学报,2006,25(2):163-165. 被引量:7

二级参考文献27

共引文献16

同被引文献54

  • 1王建刚,王福豹,段渭军.加权最小二乘估计在无线传感器网络定位中的应用[J].计算机应用研究,2006,23(9):41-43. 被引量:50
  • 2徐征,何为,汪泉弟.颅内血肿和水肿的无创检测方法[J].重庆大学学报(自然科学版),2006,29(7):29-32. 被引量:3
  • 3王聪,董秀珍,史学涛,帅万均,杨润楠,尤富生.基于电阻抗成像的均质头模型研究[J].航天医学与医学工程,2007,20(1):19-23. 被引量:5
  • 4Griffiths H. Magnetic induction tomography [J]. Measurement Science and Technology, 2001, 12(8): 1126 -1131.
  • 5Mamatjan Y. Imaging of hemorrhagic stroke in magnetic induction tomography: An in vitro study [J]. International Journal of Imaging Systems and Technology, 2014, 24 (2) : 161 -166.
  • 6Merwa R, Hollaus K, Brunner P, et al. Solution of the inverse problem of magnetic induction tomography (MIT) [J] . Physiological Measurement, 2005, 26(2): 241 -249.
  • 7Teniou S, Meribout M, AI-Wahedi K, et al. A Near-infraredbased magnetic induction tomography solution to improve the image reconstruction accuracy in opaque environments [J] . IEEE Transactions on Magnetics, 2013, 49(4) :1361 -1366.
  • 8Jin B, Khan T, Maass P. A reconstruction algorithm for electrical impedance tomography based on sparsely regularization [J]. International Journal for Numerical Methods in Engineering, 2012, 89 (3) : 337 - 353.
  • 9Hsin YW, Soleimani M. Hardware and software design for a National Instrument-based magnetic induction tomography system for prospective biomedical applications [J]. Physiol Measurement,2012,33(5) :863 -879.
  • 10Bras NB, Martins RC, Serra AC, et al. A fast forward problem solver for the reconstruction of biological maps in magnetic induction tomography [J]. IEEE Transactions on Magnetics, 2010, 46( 5) : 1193 -1202.

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部