摘要
利用矩阵的秩方法与广义Schur补的最大秩与最小秩,研究两个矩阵和的{1,3}-逆与{1,4}-逆分别与各个矩阵的{1,3}-逆与{1,4}-逆的和之间的关系.得到{A(1,3)+B(1,3)}={(A+B)(1,3)}以及{A(1,4)+B(1,4)}={(A+B)(1,4)}成立的充要条件.
The relation between {1,3}-inverse and {1,4}-inverse of sum of two matrices and the sum of {1,3}-inverse and {1,4}-inverse of every matrix was studied by using matrix rank method and maximal ranks and minimal ranks of generalized Schur complement.The necessary and sufficient conditions of {A(1,3)+B(1,3)}={(A+B)(1,3)} and {A(1,4)+B(1,4)}={(A+B)(1,4)} were obtained.
出处
《兰州理工大学学报》
CAS
北大核心
2012年第1期136-139,共4页
Journal of Lanzhou University of Technology
基金
山东省教育厅科研发展计划项目(J09LA05)