期刊文献+

PEI/SPIO对骨髓间充质干细胞生物学特性的影响 被引量:3

Biological characteristics of bone marrow mesenchymal stem cells labeled by superparamagnetic iron oxide with amphiphilic polyethylenimine
原文传递
导出
摘要 目的探讨应用新型聚乙烯酰胺(PEI)包覆的超顺磁性氧化铁(SPIO)标记骨髓间充质干细胞(bMSCs)对其生物学特性的影响。方法分离、培养贵州小香猪bMSCs,选取第3代bMSCs,用含铁浓度为4、6、8、10、12μg/ml的DMEM/F12培养液孵育24h,未标记组为对照。通过普鲁士蓝染色、透射电镜检查、胎盼蓝染色、MTT检测及成骨、成软骨、成脂诱导分化实验,探讨不同PEI/SPIO浓度对bMSCs标记效率、细胞活性、增殖及分化的影响。结果铁浓度为8μg/ml以上的SPIO标记bMSCs后,普鲁士蓝染色标记效率均接近100%。与对照组相比,Fe浓度为4、6、8μg/ml的PEI/SPIO标记的bMSCs活细胞比率均在95%以上,差异无统计学意义(P>0.05);而Fe浓度为10μg/ml时,活细胞比率约为(80.24±1.34)%,Fe浓度为12μg/ml时,活细胞比率约为(75.44±2.33)%,两者对细胞的活性有明显的抑制作用(P<0.05)。4、6、8g/ml的PEI/SPIO标记的bMSCs成骨、成软骨及成脂分化与正常对照组相比无明显差异,而10、12ug/ml组在诱导培养过程中大部分细胞死亡。结论含铁浓度8μg/ml是PEI/SPIO标记干细胞的适宜浓度,既能高效地标记bMSCs,又不影响bMSCs的细胞活性及增殖分化能力等生物学特性。 Objective To investigate the effects of superparamagnetic iron oxide covered by amphiphilic polyethylenimine (PEI)/SPIO biological characteristics of bone marrow derived mesenchymal stem cells (bMSCs) on their. Methods BMSCs were obtained and cultured from Guizhou minipig. The fourth passage of bMSCs were divided into five groups, and incubated in DMEM/F12 containing PEI/SPIO of 4, 6, 8, 10, 12 μg/ml respectively for 24 hours. Labeled cells were compared with unlabeled cells by Prussian blue staining, transmission electron microscope, Trypan blue staining, MTT test and inductions of osteogenesis, chondrogenesis and adipogenesis, to evaluate the effects of SPIO on cell labeling efficiency, cell viability, proliferation and differentiation ability. Results The labeling efficiency of SPIO (8, 10, 12 μg/ml, 24 h) was close to 100% according to Prussian blue staining. In 4, 6 and 8 μg/ml group, no statistically significant difference was found in cell viability or proliferation between labeled and unlabeled cells (P0.05). Osteogenic, chondrogenic and adipogenic inductions demonstrated that labeled bMSC had the ability to differentiate into osteoblasts, chondroblasts and adiptoblasts. In 10, 12 μg/ml group, there were statistically significant differences in the viability, proliferation between labeled and unlabeled cells (P0.05), and most of cells deceased in the procedure of osteogenic, chondrogenic and adipogenic inductions. Conclusions PEI/SPIO of 8 μg/mL can effectively label porcine bMSCs, without influencing the cell viability, proliferation and the multiple differentiation ability.
出处 《中华关节外科杂志(电子版)》 CAS 2012年第1期51-54,共4页 Chinese Journal of Joint Surgery(Electronic Edition)
基金 国家自然科学基金面上项目(No.30870639) 重庆市科技攻关计划项目(CSTC 2010AB5118)
关键词 间质干细胞 聚乙烯亚胺 超顺磁性氧化铁 生物学特性 Mesenchymal stem cells Polyethylenimine Superparamagnetic iron oxide Biologicalcharacteristic
  • 相关文献

参考文献8

  • 1Koga H,Engebretsen L,Brinchmann JE,et al.Mesenchymal stem cell-based therapy for cartilage repair:a review.Knee Surgery Sports Traumatology Arthroscopy,2009,17:1289-1297.
  • 2Politi LS,Bacigaluppi M,Brambilla E,et al.Magnetic resonance-based tracking and quantification of intravenously injected neural stem cell accumulation in the brains of mice with experimental multiple sclerosis.Stem Cells,2007,25:2583-2592.
  • 3Wang Z,Liu G,Sun J,et al.Self-assembly of magnetite nanocrystals with amphiphilic polyethylenimine:structures and applications in magnetic resonance imaging.Journal of Nanoscience and Nanotechnology,2009,9:378-385.
  • 4谭洪波,崔运利,王富友,张颖,刘军,段小军,杨柳.脱细胞骨软骨支架复合自体骨髓间充质干细胞修复羊骨软骨缺损的研究[J].中华关节外科杂志(电子版),2010,4(6):37-40. 被引量:5
  • 5Sykova E,Jendelova P.Magnetic resonance tracking of implanted adult and embryonic stem cells in injured brain and spinal cord.Ann N Y Acad Sci,2005,1049:146-160.
  • 6Brazelton TR,Blaua HM.Optimizing techniques for tracking transplanted stem cells in vivo.Stem Cells,2005,23:125-165.
  • 7Van Buul GM,Farrell E,Kops N,et al.Ferumoxides protamine sulfate is more effective than ferucarbotran for cell labeling:implications for clinically applicable cell tracking using MRI.Contrast Media Mol Imaging,2009,4:230-236.
  • 8Jing XH,Yang L,Duan XJ,et al.In vivo MR imaging tracking of magnetic iron oxide nanoparticle labeled,engineered,autologous bone marrow mesenchymal stem cells following intra-articular injection.Joint Bone Spine,2008,75:432-438.

二级参考文献9

  • 1Chu CR, Szczodry M, Bruno S. Animal models for cartilage regeneration and repair. Tissue Eng Part B Rev, 2010, 16( 1 ) : 105 - 115.
  • 2Zhou XZ, Leung VY, Dong QR, et al. Mesenchymal stem cell- based repair of articular cartilage with polyglycolic acid- hydroxyapatite biphasic scaffold, lnt J Artif Organs, 2008, 31 (6) : 480 -489.
  • 3Jackson DW, Lalor PA, Aberman HM, et al. Spontaneous repair of full-thickness defects of articular cartilage in a goat model. J Bone Joint Surg Am, 2001, 83 -A(1) : 53 -64.
  • 4Niemeyer P, Pestka JM, Kreuz PC, et al. Characteristic complications after autologous chondmcyte implantation for cartilage defects of the knee joint. Am J Sports Med, 2008, 36 (11): 2091 -2099.
  • 5Kandel RA, Grynpas M, Pilliar R, et al. Repair of osteochondral defects with biphasic cartilage-calcium polyphosphate constructs in a sheep model. Biomaterials, 2006, 27 (22) : 4120 - 4133.
  • 6Ando W, Tateishi K, Hart DA, et al. Cartilage repair using an in vitro generated scaffold-free tissue-engineered construct derived from porcine synovial mesenchymal stem cells. Biomaterials, 2007, 28 (36) : 5462 - 5470.
  • 7Alford JW, Cole BJ. Cartilage restoration, part 1 : basic science, historical perspective, patient evaluation, and treatment options. Am J Sports Med, 2005, 33(2) : 295 -306.
  • 8Hunziker EB. Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects. Osteoarthr Cartilage, 2002, 10(6) : 432 -463.
  • 9Wakitani S, Goto T, Pineda S J, et al. Mesenchymal cell-based repair of large, full-thickness defects of articular cartilage. J Bone Joint Surg Am, 1994, 76(4) : 579 -592.

共引文献4

同被引文献44

  • 1张勇,程敬亮,李华丽,王娟,赵天春.超顺磁性氧化铁颗粒标记对大鼠骨髓间充质干细胞活力的影响[J].郑州大学学报(医学版),2009,44(6):1176-1178. 被引量:2
  • 2蔡金华,冯敢生,刘官信,张德迎,胡琳燕.不同浓度菲立磁对大鼠间充质干细胞标记效率和细胞活力的影响[J].临床放射学杂志,2007,26(2):190-193. 被引量:11
  • 3Bennell KL, Hunter D J, Hinman RS. Management of osteoarthritis of the knee[J]. BMJ, 2012, 345 : e4934.
  • 4Pap T, Korb-Pap A. Cartilage damage in osteoarthritis and rheumatoid arthritis-two unequal siblings [ J]. Nat Rev Rheumatol, 2015, 11(10) : 606 -615.
  • 5Makris EA, Gomoll AH, Malizos KN, et al. Repair and tissue engineering techniques for articular cartilage [ J]. Nat Rev Rheumatol, 2015, 11(1) : 21 -34.
  • 6Wang P, Li YX, Huang L, et al. Effects and safety of allogenic mesenchymal stem cell intravenous infusion in active ankylosing spondylitis patients who failed NSAIDs: a 20-week clinical trial [J]. Cell Transplant, 2014, 23(10): 1293-1303.
  • 7De Bari C, Dell "accio F, Tylzanowski P, et al. Muhipotent mesenehymal stem cells from adult human synovial membrane [ J ]. Arthritis Rheum, 2001, 44(8) : 1928 -1942.
  • 8Koga H, Muneta T, Ju YJ, et al. Synovial stem cells are regionally specified according to local microenvironments after implantation for cartilage regeneration [ J ]. Stern Cells, 2007, 25 ( 3 ) : 689 - 696.
  • 9Koga H, Muneta T, Nagase T, et al. Comparison of mesenchymal tissues-derived stem cells for in vivo chondrogenesis: suitable conditions for cell therapy of cartilage defects in rabbit [ J ]. Cell Tissue Res, 2008, 333 (2) : 207 - 215.
  • 10Pei M, He F, Boyce BM, et al. Repair of full-thickness femoral condyle cartilage defects using allogeneic synovial cell-engineered tissue constructs[J]. Osteoarthritis Cartilage, 2009, 17(6) : 714 - 722.

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部