摘要
针对在半监督分类问题中单独使用全局学习容易出现的在整个输入空间中较难获得一个优良的决策函数的问题,以及单独使用局部学习可在特定的局部区域内习得较好的决策函数的特点,提出了一种结合全局和局部正则化的半监督二分类算法。该算法综合全局正则项和局部正则项的优点,基于先验知识构建的全局正则项能平滑样本的类标号以避免局部正则项学习不充分的问题,通过基于局部邻域内样本信息构建的局部正则项使得每个样本的类标号具有理想的特性,从而构造出半监督二分类问题的目标函数。通过在标准二类数据集上的实验,结果表明所提出的算法其平均分类正确率和标准误差均优于基于拉普拉斯正则项方法、基于正则化拉普拉斯正则项方法和基于局部学习正则项方法。
As for semi-supervised classification problem,it is difficult to obtain a good classification function for the entire input space if global learning is used alone,while if local learning is utilized alone,a good classification function on some specified regions of the input space can be got.Accordingly,a new semi-supervised binary classification algorithm based on a mixed local and global regularization was presented in this paper.The algorithm integrated the benefits of global regularizer and local regularizer.Global regularizer was built to smooth the class labels of the data so as to lessen insufficient training of local regularizer,and based upon the neighboring region,local regularizer was constructed to make class label of each data have the desired property,thus the objective function of semi-supervised binary classification problem was constructed.Comparative semi-supervised binary classification experiments on some benchmark datasets validate that the average classification accuracy and the standard error of the proposed algorithm are obviously superior to other algorithms.
出处
《计算机应用》
CSCD
北大核心
2012年第3期643-645,648,共4页
journal of Computer Applications
基金
国家自然科学基金资助项目(10831009
10971223
11071252)
关键词
半监督学习
二分类问题
全局正则化
局部正则化
平滑
semi-supervised learning
binary classification problem
global regularization
local regularization
smooth