期刊文献+

结合全局和局部正则化的半监督二分类算法 被引量:1

Semi-supervised binary classification algorithm based on global and local regularization
下载PDF
导出
摘要 针对在半监督分类问题中单独使用全局学习容易出现的在整个输入空间中较难获得一个优良的决策函数的问题,以及单独使用局部学习可在特定的局部区域内习得较好的决策函数的特点,提出了一种结合全局和局部正则化的半监督二分类算法。该算法综合全局正则项和局部正则项的优点,基于先验知识构建的全局正则项能平滑样本的类标号以避免局部正则项学习不充分的问题,通过基于局部邻域内样本信息构建的局部正则项使得每个样本的类标号具有理想的特性,从而构造出半监督二分类问题的目标函数。通过在标准二类数据集上的实验,结果表明所提出的算法其平均分类正确率和标准误差均优于基于拉普拉斯正则项方法、基于正则化拉普拉斯正则项方法和基于局部学习正则项方法。 As for semi-supervised classification problem,it is difficult to obtain a good classification function for the entire input space if global learning is used alone,while if local learning is utilized alone,a good classification function on some specified regions of the input space can be got.Accordingly,a new semi-supervised binary classification algorithm based on a mixed local and global regularization was presented in this paper.The algorithm integrated the benefits of global regularizer and local regularizer.Global regularizer was built to smooth the class labels of the data so as to lessen insufficient training of local regularizer,and based upon the neighboring region,local regularizer was constructed to make class label of each data have the desired property,thus the objective function of semi-supervised binary classification problem was constructed.Comparative semi-supervised binary classification experiments on some benchmark datasets validate that the average classification accuracy and the standard error of the proposed algorithm are obviously superior to other algorithms.
作者 吕佳
出处 《计算机应用》 CSCD 北大核心 2012年第3期643-645,648,共4页 journal of Computer Applications
基金 国家自然科学基金资助项目(10831009 10971223 11071252)
关键词 半监督学习 二分类问题 全局正则化 局部正则化 平滑 semi-supervised learning binary classification problem global regularization local regularization smooth
  • 相关文献

参考文献13

  • 1吕佳.基于动态隧道系统的K-means聚类算法研究[J].重庆师范大学学报(自然科学版),2009,26(1):73-77. 被引量:8
  • 2CHAPELLE O,SCHOLKOPF B,ZIEN A.Semi-supervised learning[M].Cambridge:MIT Press,2006.
  • 3ZHU X J.Semi-supervised learning literature survey[EB/OL].[2010-05-10].hitp://pages.cs.wisc.edu/~ jerryzhu/pub/ssl_survey.pdf.
  • 4吕佳.基于改进分类模型的文本分类系统实现[J].重庆师范大学学报(自然科学版),2009,26(2):79-83. 被引量:3
  • 5ZHU X J,GHAHARMANI Z,LAFFERTY J.Semi-supervised learning using Gaussian fields and harmonic functions[C] //FAWCETT T,MISHRA N.Proceedings of 20th International Conference on Machine Learning,Menlo Park:AAAI Press,2003:912-919.
  • 6BELKIN M,NIYOGI P,SINDHWANI V.Manifold regularization:A geometric framework for learning from labeled and unlabeled examples[J].Journal of Machine Learning Research,2006,7(11):2399-2434.
  • 7ZHOU D Y,BOUSQUET O,LAL T N,et al.Learning with local and global consistency[C] //THRUM S,SAUL L,SCH(O)LKOPF B.Proceedings of the 18th Annual Conference on Neural Information Processing Systems.Cambridge:MIT Press,2003:321-328.
  • 8WU M R,SCHOLKOPF B.Transductive classification via local learning regularization[C] // MEILA M,SHEN X.Proceedings of the 11 th International Conference on Artificial Intelligence and Statistics.Cambridge:MIT Press,2007:624-631.
  • 9XIANG S M,NIE F P,ZHANG C S.Semi-supervised classification via local spline regression[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2011,32(11):2039-2053.
  • 10WANG F.A general learning framework using local and global regularization[J].Pattern Recognition,2010,43(9):3120-3129.

二级参考文献15

共引文献9

同被引文献15

  • 1TSOUMAKAS G, KATAKIS |. Muhi-label classification: an over- view[ J]. International Journal of Data Warehousing and Mining, 2007, 3(3): 1-13.
  • 2CHANG E, GOH K, SYCHAY G, et al. Content-based soft annota- tion for multimodal image retrieval using Bayes point machines[ J]. IEEE Transactions on Circuits and Systems for Video Technology, Special Issue on Conceptual and Dynamical Aspects of Multimedia Content Description, 2003, 13(1) : 26 -38.
  • 3BOUTELL M R, LUO J SHEN X, et al. Learning multi-label scene classification[ J], Pattern Recognition, 2004, 37(9) : 1757 - 1771.
  • 4ZHANG MINLING, ZHANG KUN. Multi-label learning by exploi- ting label dependency[ C]/! Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2010: 999- 1007.
  • 5LIU YI, JIN RONG, YANG LIU. Semi-supervised muhi-label learning by constrained non-negative matrix factorization[ C]// Pro- ceedings of the 21st National Conference on Artificial Intelligence. Menlo Park, CA: AAAI Press, 2006:421 -426.
  • 6CHEN GANG, SONG YANQIU, WANG FEI, et al. Semi-super- vised multi-label learning by solving a Sylvester equation[ EB/OL]. [ 2012- 05- 20]. https://www, siam. org/proceedings/dataminingJ 2008/dmO8_37_chen. pdf.
  • 7KONG X N, NG M K, ZHOU Z H. Transductive multi-label learn- ing via label set propagation[ J]. IEEE Transactions on Knowledge and Data Engineering, 2011,23(5): 788-799.
  • 8BELKIN M, NIYOGI P, SINDHWANI V. Manifold regularization: a geometric framework for leaming from labeled and unlabeled examples [ J ]. Journal of Machine Learning Research, 2006, 7 ( 11 ) : 2399 - 2434.
  • 9WU M R, SCHOLKOPF B. Transductive classification via local learning regularization [ C // Proceedings of the 11 th International Conference on Artificial Intelligence and Statistics. Cambridge: MIT Press, 2007 : 624 - 631.
  • 10WANG FEI. A general learning framework using local and global regularization [ J ]. Pattern Recognition, 2010, 43 ( 9 ) : 3120 - 3129.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部