期刊文献+

用纠错编码改进的M-ary支持向量机多类分类算法 被引量:1

Enhanced M-ary support vector machine by error correction coding for multi-category classification
下载PDF
导出
摘要 针对M-ary支持向量机(SVM)多类分类算法结构简单,但泛化能力较弱的特点,提出了与纠错编码理论相结合的改进的M-ary SVM算法。首先,将原始类别信息编码作为信息码;然后结合纠错编码理论及期望的纠错能力,产生一定程度上性能最佳的编码,作为分类器训练的依据;最后,对于识别阶段输出编码中的错误分类利用检错纠错原理进行校正。实验结果表明,改进的算法通过引入尽可能少的冗余子分类器增强了标准M-ary SVM多类分类算法的性能。 M-ary Support Vector Machine(M-ary SVM) for multi-category classification has the advantage of simple structure,but the disadvantage of weak generalization ability.This paper presented an enhanced M-ary SVM algorithm in combination with error correction coding theory.The main idea of the approach was to generate a group of best codes based on information codes derived from the original category flags information,then utilize such codes as the basis for training the classifier,while in the final feed-forward phase the output codes composed of each sub-classifier could be corrected by error detection and correction principle if there exists any identifying error.The experimental results confirm the effectiveness of the improved algorithm brought about by introducing as few sub-classifiers as possible.
作者 包健 刘然
出处 《计算机应用》 CSCD 北大核心 2012年第3期661-664,共4页 journal of Computer Applications
关键词 M-ARY 支持向量机 纠错编码 多类分类 最小码间距离 输出校正码 M-ary Support Vector Machine(SVM) error correction coding multi-category classification minimum code distance output correction code
  • 相关文献

参考文献17

  • 1Vapnik V N 张学工.统计学习理论的本质[M].北京:清华大学出版社,2000..
  • 2CORTES C,VAPNIK V N.Support vector networks[J].Machine Learning,1995,20(3):273-297.
  • 3PLATT J C,CRISTIANINI N,TAYLOR J S.Large margin DAGs for multiclass classification[C] // NIPS'99:Proceedings of Neural Information Processing Systems.Cambridge,MA:MIT Press,2000:547-553.
  • 4SEBALD D J,BUCKLEW J A.Support vector machines and the multiple hypothesis test problem[J].IEEE Transactions on Signal Processing,2001,49(11):2865-2872.
  • 5李广莉,崔广顺.一种改进的模糊多类支持向量机算法[J].计算机测量与控制,2011,19(4):908-910. 被引量:7
  • 6于清,赵晖.一种2_a_2支持向量机多类分类新方法[J].计算机工程与应用,2008,44(25):186-188. 被引量:2
  • 7HSU C,LIN C.A comparison of methods for multiclass support vector machines[J].IEEE Transactions on Neural Networks,2002,13(2):415-425.
  • 8苟博,黄贤武.支持向量机多类分类方法[J].数据采集与处理,2006,21(3):334-339. 被引量:63
  • 9ANGUITA D,GHIO A,PISCHIUTTA S.A support vector machine with integer parameters[J].Neurocomputing,2008,72(1/2/3):480-489.
  • 10ANGUITA D,GHIO A,PISCHIUTTA S.A hardware-friendly support vector machine for embedded automotive applications[C] //Proceedings of International Joint Conference on Neural Networks.Piscataway,NJ:IEEE Press,2007:12-17.

二级参考文献55

共引文献265

同被引文献5

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部