期刊文献+

蔬菜中大肠杆菌的机器视觉快速检测 被引量:6

Rapid Detection Based on Machine Vision for Escherichia coli in Vegetables
下载PDF
导出
摘要 为了适应蔬菜等农产品对大肠杆菌快速检测的需求,提出采用形态特征参数及染色后菌体区域的颜色特征参数统计值对大肠杆菌进行快速识别,同时提出采用主成分神经网络作为预测模型来提高识别能力。提取了Hu’s不变矩、形状因子、密集度、饱和度等14个具有尺度、平移、旋转不变性的特征参数,提取主成分建立了基于主成分的3层BP神经网络模型。将其与普通神经网络模型比较的结果表明,主成分神经网络简化了网络结构、减少了训练时间和计算量、提高了识别的正确率,对大肠杆菌的识别正确率达到91.33%。 In order to adapt to the requests of on-site rapid detection technique of Escherichia coli(E.coli) for the safety of agricultural products,a rapid E.coli recognition method based on shape and color feature parameters was proposed.Principal component neural network was used to improve the recognition ability.Principal component analysis was applied to the 14 extracted feature parameters,including Hu's moment invariants,shape factor,denseness and saturation,et al.A three-layer BP neural network model based on the principal components was constructed.Compared with traditional BP neural network,the configuration of the principal component neural network was simpler,the training time was shorter and the recognition accuracy was higher.The recognition accuracy of the principal component neural network can arrived at 91.33%.
出处 《农业机械学报》 EI CAS CSCD 北大核心 2012年第2期134-139,145,共7页 Transactions of the Chinese Society for Agricultural Machinery
基金 "十一五"国家科技支撑计划资助项目(51105167) 工程仿生教育部重点实验室开放基金资助项目(K201207A)
关键词 大肠杆菌 蔬菜 机器视觉 主成分分析 神经网络 Escherichia coli Vegetable Machine vision Principal component analysis Neural network
  • 相关文献

参考文献12

  • 1GB/T4789.38-2008食品卫生微生物学检验大肠杆菌计数[S].2008.
  • 2陈盼,贺稚非,龚霄,伍先绍.食品中大肠杆菌的快速检测方法[J].食品工程,2008(1):58-61. 被引量:16
  • 3Khan I U H, Gannon V, Kent R, et al. Development of a rapid quantitative PCR assay for direct detection and quantification of culturable and non-cuhurable Escherichia coli from agriculture watersheds[ J ]. Journal of Microbiological Methods, 2007, 69(3): 480-488.
  • 4Hamilton W P, Kim M, Thackston E L. Comparison of commercially available Escherichia coli enumeration tests : implications for attaining water quality standards[ J]. Water Research, 2005, 39 (20) :4 869 -4 878.
  • 5金声琅,李玉娟,殷涌光.采用显微图像识别技术快速检测食品细菌总数[J].农业工程学报,2008,24(4):177-180. 被引量:11
  • 6Yin Y G, Ding Y. A close to real-time prediction method of total coliform bacteria in foods based on image identification technology and artificial neural network [ J ]. Food Research International, 2009, 42 ( 1 ) : 191 - 199.
  • 7Ahmad I, Jindal V K. An automatic procedure for rapid online estimation of raw milk quality[ J]. LWT-Food Science and Technology, 2006, 39 ( 4 ) :431 - 435.
  • 8孔祥诚,陈江,李晓聪,吴小映.美兰染色法检测酵母活性的优化试验[J].啤酒科技,2006(12):50-52. 被引量:11
  • 9孙宏琦,施维颖,巨永锋.利用中值滤波进行图像处理[J].长安大学学报(自然科学版),2003,23(2):104-106. 被引量:62
  • 10Hasani M, Moloudi M. Application of principal component-artificial neural network models for simultaneous determination of phenolic compounds by a kinetic spectrophotometric method[ J]. Journal of Hazardous Materials, 2008, 157 (1):161 -169.

二级参考文献42

共引文献107

同被引文献92

引证文献6

二级引证文献58

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部