期刊文献+

职前教师对数列极限概念的理解研究 被引量:2

Research on Prospective Teachers’ Understanding of Sequence Limit
下载PDF
导出
摘要 APOS理论是一种建构主义的数学学习理论,它强调学生在建构数学概念时要经历操作、过程、对象和图式阶段.职前教师在数列极限概念的建构中基本达到了前3个阶段,图式阶段仍需大幅度提高.本科生和专升本学生存在显著差异.职前教育应加强数学专业课程的教学,加强对中学数学教学内容的深层理解。 APOS theory, one of the constructionism mathematic learning theories, emphasizes that construction of mathematics concepts must experience the action stage, process stage, object stage, schema stage. While constructing the sequence limit concept, prospective teachers generally have attained the first three stages, and need improve the last one 'greatly. There exists striking difference on parts of investigation items between university students and junior college to university students. Prospective education should put more attention to teaching the mathematics major subjects and deeply understanding high school contents.
作者 杨芳
机构地区 长治学院数学系
出处 《数学教育学报》 北大核心 2012年第1期58-60,共3页 Journal of Mathematics Education
关键词 职前教师 数列极限 理解 APOS理论 prospective teachdrs sequence limit understanding APOS theory
  • 相关文献

参考文献6

  • 1Lee B S. An Investigation of Prospective Secondary Mathematics Teachers' Understanding of the Mathematical Limit Concept [D]. Michigan State University, 1992.
  • 2景敏,张波.基于思维导图方法对职前教师极限概念理解的研究[J].数学教育学报,2006,15(2):61-63. 被引量:12
  • 3Ed Dubinsky. APOS: A Constructivist Theory of Learning in Undergraduate Mathematics Education Research [J]. The China-Japan-US Seminar on Mathematical Education, 1993.
  • 4Bolte L A. Enhancing and Assessing Prospective Teachers Integration and Expression of Mathematical Knowledge [J]. Journal of Mathematics Teacher Education, 1999.
  • 5乔连全.APOS:一种建构主义的数学学习理论[J].全球教育展望,2001,30(3):16-18. 被引量:57
  • 6华东师范大学数学系.数学分析[M].北京:高等教育出版社,2001..

二级参考文献5

  • 1Davis and Vinner.The Notions of Limit:Some Seemingly Unavoidable Misconception Stages [J].JMB,1986 (5):281-303.
  • 2Tall,Vinner.Concept Image and Concept Definition in Mathematics,Particular Reference to Limits and Continunity [J].ESM,1981,(12):151-169.
  • 3Lee B S.An Investigation of Prospective Secondary Mathematics Teachers' Understanding of the Mathematical Limit Concept [D].Michigan State University,1992.
  • 4Jennifer Earles Szydlik.Mathematics Beliefs and Conceptual Understanding of the Limit of a Function [J].JRME,2000,(31):258.
  • 5Bolte L A.Enhancing and Assessing Preservice Teachers Integration and Expression of Mathematical Knowledge [J].Journal of Mathematics Teacher Education,1999,(2):167-185.

共引文献255

同被引文献14

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部