期刊文献+

基于土壤中多环芳烃解吸特性的生物修复效果评价 被引量:6

Evaluation of effectiveness of bioremediation based on PAHs desorption characteristics in soil
原文传递
导出
摘要 采用XAD-2树脂辅助解吸方法测试了生物堆修复前后土壤中荧蒽、苯并(a)蒽、苯并(a)芘、苯并苝这4种PAHs的解吸特性,并根据解吸结果进行了生物修复效果评价.结果表明,土壤中这4种PAHs的累计解吸量随解吸时间延长而增加,但解吸速率逐渐降低,符合"两阶段"解吸模型,生物修复前土壤中不同种类PAHs"快解吸"量占PAHs总量的32%~70%,修复后土壤中不同种类PAHs"快解吸"量占PAHs总量的14%~39%.经过6个月的生物修复,基于生物可利用含量变化的荧蒽、苯并(a)蒽、苯并(a)芘、苯并苝修复效率依次为82.9%、79.7%、64.9%、54.3%,,明显高于基于PAHs总含量的生物修复效率61.0%、51.7%、37.2%、38.7%. The desorption characteristics of four targeted PAHs ( fluoranthene, benz[ a] anthracene, benzo [ a] pyrene, benzo[ ghil perylene) in soil before and after biopile treatment was studied by using XAD-2 assisted desorption experiment and the bioremediation effectiveness was further evaluated based on the study of the desorption results. The findings revealed that the accumulative amount of desorbed PAHs in the experiment increased with time while the desorption rate decreased, which followed the "dual - phase" desorption model. The fast desorbable part of the four PAHs was 32% - 70% before bioremediation and dropped down to 14% -39% after 6 month bioremediation. The remediation effectiveness based on the bioavailable fluoranthene, benz[ a] anthracene, benzol a] pyrene, benzo[ ghi] perylene was 82.9% ,79.7% ,64.9% ,54.3% , respectively, which were higher than those calculated based on the total concentration of each contaminant, which was about 61.0% ,51.7% ,37.2% ,38.7% correspondingly.
出处 《环境科学学报》 CAS CSCD 北大核心 2012年第3期726-730,共5页 Acta Scientiae Circumstantiae
基金 国家高技术研究发展计划(863)项目(No.2008AA06A410) 北京市科委重大项目(No.D08040900360804) 环保公益性行业科研专项(No.201009032)~~
关键词 多环芳烃 生物修复 解吸特性 效果评价 PAHs bioremediation desorption characteristic effectiveness evaluation
  • 相关文献

参考文献21

  • 1晁雷,周启星,陈苏.污染土壤修复效果评定方法的研究[J].环境污染治理技术与设备,2006,7(4):7-11. 被引量:19
  • 2Chiou C T. 1989. Theoretical considerations for the partition uptake of nonionic organic compounds by soil organic matter [ A ]. Reactions and Movement of Organic Chemicals in Soil [ C ]. Madison: Soil Science Society of America. 1-29.
  • 3Cornelissen G, Rigterink H, Ferdinandy M M A, et al. 1998. Rapidly desorbing fractions of PAHs in contaminated sediments as a predictor of the extent of bioremediation [ J 1. Environmental Science and Technology, 32(7) : 966-970.
  • 4David C B, Murray R G. 2003. Transport and reaction process in bioremediation of organic contaminants: review of bacterial degradation and transportation [J]. International Journal of Chemical Reaction Engineering, 1:1-18.
  • 5Ghosh U J W T, Lathy R G. 2001. Partical-seale investigation of polynuclear aromatic hydrocarbon desorption kinetic and thermodynamic from sediment [ J ]. Environmental Science and Technology, 35:3468-3475.
  • 6Gerard C, Henk R, Marijke M A F, et al. 1998. Rapidly desorbing fractions of PAHs in contaminated sediments as a predictor of the extent of bioremediation [ J ]. Environmental Science and Technology, 32:966-970.
  • 7I-Iuang W, Young T, Schlautman M A, et al. 1997. A distributed reactivity model for sorption by soils and sediments. 9. General isotherm nonlinearity and applicability of the dual reactive domain model [J]. Environmental Science and Technology, 31 ( 6 ) : 1703-1710.
  • 8Li L, Makram T S, Amid P K, et al. 2004. Assessing the bioavailability of PAHs in field-contaminated sediment using XAD-2 assisted desorption [J]. Environmental Science and Technology, 38 (6) : 1786-1793.
  • 9罗启仕,张锡辉,王慧,钱易.生物修复中有机污染物的生物可利用性[J].生态环境,2004,13(1):85-87. 被引量:19
  • 10Leboeuf E J, Weber Jr W J. 1997. A distributed reactivity model for sorption by soils and sediments. 8. Sorbent organic domains: discovery of a humic acid glass transition and an argument for a polymer-based model[J]. Environmental Science and Technology, 31(6) :1697-1702.

二级参考文献32

  • 1周启星,宋玉芳,孙铁珩.生物修复研究与应用进展[J].自然科学进展,2004,14(7):721-728. 被引量:30
  • 2王新,周启星.重金属与土壤微生物的相互作用及污染土壤修复[J].环境污染治理技术与设备,2004,5(11):1-5. 被引量:49
  • 3[16]ACAR Y B,LI H,GALE R J.Phenol removal from kaolinte by electrokinetics[J].J Geotech Eng,1997,118: 1837-1851.
  • 4[17]BRUELL C J,SEGALL B A,WALSH H T.Electro-osmotic removal of gasoline hydrocarbons and TCE from clay[J].J Environ Eng,1992,118: 84-100.
  • 5[18]JACKMAN S A,MAINI G,SHARMAN A K,et al.Electrokinetic movement and biodegradation of 2,4-dichlorephenoxyacetic acid in silt soil[J].Biotechnol Bioeng,2001,74(1): 40-48.
  • 6[19]LEE K S,LEE K.Bioremediation of diesel-contaminated soil by bacterial cells transported by electrokinetics[J].J Microbiol Biotechnol,2001,11(6): 1038-1045.
  • 7[1]JUHASZ A L,MEGHARAJ M,NAIDU R.Bioavailability: the major challenge (constraint) to bioremediation of organically contaminated soils[A].In: WISE D L,et al.,eds.Bioremediatiom of Contaminated Soils[C].New York: Marcel Dekker Inc,2000: 217-241.
  • 8[2]CHUNG N,ALEXANDER M.Effect of soil properties on bioavailability and extractability of phenanthrene and atrazine sequestered in soil[J].Chemosphere,2002,48: 109-115.
  • 9[3]RITTMANN B E,MCCARTY P L.Environmental biotechnology: principles and applications[M].New York: McGraw-Hill Com Inc,2001: 695-730.
  • 10[4]PIGNATELLO J J,XING B.Mechanisms of slow sorption of organic chemicals to natural particles[J].Environ Sci Technol,1996,30: 1-11.

共引文献36

同被引文献148

引证文献6

二级引证文献58

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部