期刊文献+

Love波传感器结构的有限元分析方法 被引量:9

Finite element method analysis of love wave sensors device
原文传递
导出
摘要 提出一种ANSYS分析Love波传感器性能的有限元方法。根据Love波传感器的特点,施加一维近似假设和周期性边界条件建立了由压电基片,金属电极和波导层组成Love波传感器的三维有限元分析模型,并在此模型分析结果基础上提取结构的特征频率。一方面运用开路和短路条件下的特征频率来计算机电耦合系数,另一方面结合微扰理论的计算得到器件的质量灵敏度。最后通过这两个参数来选取波导层厚度,使器件达到最优的性能。在不同的波导层厚度情况下,计算了SiO_2/ST-90°X石英和SiO_2/36°Y-X LiTaO_3两种结构Love波传感器结构的仿真结果,得到了这两种结构的波导层最优的厚度分别为0.11λ和0.2λ。与已报道的文献和实验的结果对比,本文所采用的方法明显优于传统的均匀层状结构理论分析的结果,通过仿真不同结构和材料参数的器件性能,有效地指导Love波传感器的设计。 A finite element method based on ANSYS is proposed to analyze love wave sensors. Firstly, with one dimensional approximation hypothesis and periodic boundary condition, a three dimensional finite element model of love wave sensor is developed, which is composed of substrate, electrode and guiding layer. The eigen frequencies can be extracted by the FEM anlysis. Then, the electromechanical coupling factor is calculated by the eigen frequencies of open and short circuit conditions while mass sensitivity is calculated based on perturbation theory. In the end, the optimum layer thickness is determined by the two parameters. With the variation of guiding layer thickness, the results of both SiO2/ST-90°X cut quartz and SiO2/36~Y-X LiTaO3 devices are presented. The optimum layer thickness is about 0.11 A and 0.2 A respectively. The simulation results are compared with the reported experimental result. It is obvious that the approach in this paper is better than conventional multi-layered method which omitted the electrodes' effect. The proposed approach is expected to provide effective guidance for love wave sensors design.
出处 《声学学报》 EI CSCD 北大核心 2012年第2期170-176,共7页 Acta Acustica
基金 国家自然科学基金资助项目(61071054)
关键词 传感器结构 LOVE波 有限元分析方法 三维有限元分析模型 ANSYS分析 周期性边界条件 器件性能 机电耦合系数 Electromechanical coupling Finite element method Quartz Silicon compounds
  • 相关文献

参考文献23

  • 1Du J, Harding G L, Ogilvy J Aet al. A study of Love-wave acoustic sensors. Sensors and Actuators A: Physical, 1996; 56(3): 211--219.
  • 2Jakoby B, Ismail G, Byfield Met al. A novel molecularly imprinted thin film applied to a Love wave gas sensor. Sensors and Actuators A: Physical, 1999; 76(1-3): 93--97.
  • 3Zimmermann C, Rebiere D, Dejous C et al. A love-wave gas sensor coated with functionalized polysiloxane for sensing organophosphorus compounds. Sensors and Actuators B: Chemical, 2001; 76(1-3): 86--94.
  • 4Fertier L, Cretin M, Rolland M et al. Love wave immunosensor for antibody recognition using an innovative semicarbazide surface functionalization. Sensors and Actuators B: Chemical, 2009; 140(2): 616-622.
  • 5Tamarin O, Dejous C, Rebiere D et al. Study of acoustic Love wave devices for real time bacteriophage detection. Sensors and Actuators B: Chemical, 2003; 91(1-3): 275-- 284.
  • 6王文.一种新型无线Love波免疫传感器.见:2009’中国西部地区声学学术交流会论文集,西双版纳,2009:108-110.
  • 7徐方迁,金步平.声表面波在厚金属栅阵中的耦合模参数[J].声学学报,2010,35(4):441-445. 被引量:5
  • 8Atashbar M Z, Bazuin B J, Simpeh Met al. 3D FE simulation of H2 SAW gas sensor. Sensors and Actuators B: Chemical, 2005; 111-112:213--218.
  • 9Ippolito S J, Kalantar-Zadeh K, Powell D Aet al. A 3- dimensional finite element approach for simulating acoustic wave propagation in layered SAW devices. Proceedings of the IEEE Ultrasonics Symposium, 2003:303 -306.
  • 10Gowini M M E, Moussa W A. A finite element model of a meres-based surface acoustic wave hydrogen sensor. Sensots, 10(2): 1232--1250.

二级参考文献20

  • 1王文,何世堂,李顺洲.用于气体传感器的声表面波振荡器频率稳定性分析[J].传感技术学报,2005,18(2):421-425. 被引量:4
  • 2XU Fangqian,HE Shitang.Theoretical and experimental study on strip reflection coefficient of different crystal symmetry class[J].Chinese Journal of Acoustics,2005,24(4):370-377. 被引量:3
  • 3WOHLTIJON H, RESSY R. Surface Acoustic Wave Probe for Chemical Analysis : part I - Instruction and Instrument Description, Anal. Chem. 51,1979 : 1458 - 1464.
  • 4MAUDER A. SAW Gas Sensors;Comparison Between Delayline and Two Port Resonator. Sensors & Actuators B 26 -27,1995:187 -190.
  • 5RAPP-M, REIBD J, EATL. Influence of Phase Position on the Chemical Response of Oscillator Driven Polymer Coated SAW Resonators, IEEE Trans. UFFC ,45,1998:621 - 627.
  • 6WANG W, HE S T,PANG Y. High frequency stability oscillator for surface acoustic wave-based gas sensor, Smart Mater. & Struct. 15,2006: 1525 - 1530.
  • 7WANG W, HE S T. Enhanced Sensitivity of SAW Gas Sensor Coated Molecularly Imprinted Polymer Incorporating High Frequency Stability Oscillator, Sensors & Actuators B125,2007:422 - 427.
  • 8WANG W,HE S T,PANG Y. Enhanced sensitivity of SAW gas sensor based on high frequency stability oscillator. Proc. IEEE Sensors Conf, Korea,2006:675 - 678.
  • 9RICCO A J, MARTIN S J, ZIPPERIAN T E, surface acoustic wave gas sensor based on film conductivity changes, Sensors & Actuators, ( 8 ), 1985:319 -333.
  • 10KHLEBAROV Z P,STOYANOVA A I,TOPALOV D I. Surface Acoustic Wave Gas Sensor. Sensors & ActuatorsB, ( 8 ), 1992 : 33 - 40.

共引文献10

同被引文献50

引证文献9

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部