期刊文献+

UWBSAR叶簇隐蔽目标差值变化检测中杂波分布建模分析与应用 被引量:1

Analysis and application of clutter distribution modeling in UWB SAR difference change detection of target in foliage
下载PDF
导出
摘要 由于树林观测区域后向散射强度具有快变特性,现有方法无法对UWB SAR叶簇隐蔽目标差值变化检测的杂波分布进行准确建模分析。为此,首先推导分析了均匀观测场景差值变化检测的杂波分布模型,而后假设观测场景后向散射强度服从伽马分布,在此基础上进一步推导了一种快起伏场景差值变化检测杂波分布模型。实验应用结果表明,该分布模型可对树林区域差值变化检测的杂波分布进行准确建模分析,从而提高变化检测性能。 In forest area, the intensity backscatter varies quickly. In UWB SAR foliage-concealed target difference change detection, this characteristic had made existing clutter models couldn't fit the clutter distribution accurately. To address the problem, the clutter model suitable for uniform scene was derived. After that, by assuming the intensity of forest area backscatter follows Gamma distribution, the clutter model suitable for serious non-stationary scene was estab- lished. And the experimental results showed that, in foliage-concealed target difference change detection, the proposed model could fit the clutter distribution more accurately, and an improved detection performance could be achieved.
出处 《通信学报》 EI CSCD 北大核心 2012年第2期76-81,共6页 Journal on Communications
基金 教育部新世纪优秀人才支持计划(NCET-07-0223) 国家自然科学基金资助项目(60972121)~~
关键词 变化检测 叶簇隐蔽目标检测 超宽带合成孔径雷达 杂波建模 change detection foliage-concealed target detection UWB SAR clutter modeling
  • 相关文献

参考文献16

  • 1梁甸农,周智敏.叶簇穿透超宽带成像雷达技术[J].国防科技参考,1999,20(3):7-10. 被引量:6
  • 2FLEISCHAMAN J G. Foliage penetration experiment[J]. IEEE Transactions on AES, 1996, 32(1): 134-164.
  • 3KAPPOR R, BANERJEE A, TSIHEINRZIS G A, et al. UWB radar detection of targets in foliage using alpha-stable clutter model[J]. IEEE Transactions on GRS, 1998, 34(3): 706-715.
  • 4DAVIS M E. Technical challenges in ultra-wideband radar development for target detection and terrain mapping[A]. IEEE Radar Conference 1999[C]. Waltham, 1999. 1-6.
  • 5NOVAK L. Algorithms for SAR change detection, compression and super-resolution[A]. International Radar Conference 2009 [C]. Bordeaux, 2009. 1-10.
  • 6ULANDER M H. Change detection of vechicle-sized targets in foreast concealment using VHFand UHF-band SAR[A]. IEEE Radar Conference 2010 [C]. Washington, 2010. 1054-1059.
  • 7王广学,黄晓涛,周智敏.基于图像分割的VHF SAR叶簇隐蔽目标差值变化检测[J].电子学报,2010,38(9):1969-1974. 被引量:3
  • 8王广学,黄晓涛,周智敏.基于邻域统计分布变化分析的UWB SAR隐蔽目标变化检测[J].电子与信息学报,2011,33(1):49-54. 被引量:10
  • 9ULANDER M H. Modeling of change detection in VHF and UHF-band SAR[A]. EUSAR2008[C]. Fridrichshafen, 2008. 127-131.
  • 10LUNDBERG M, ULANDER MH, PIERSON E, et al. A challengeproblem for detection of targets in foliage[A]. SPIE Conference on Algorithms for Synthetic Aperture Radar Imagery[C]. Orlando, 2006. 1-12.

二级参考文献21

  • 1申建华,刘上乾,麻彦轩.快速的红外图像分割算法[J].红外与毫米波学报,2005,24(3):224-226. 被引量:8
  • 2H Hellsten,M H Ulander.Development of VHF CARABAS Ⅱ SAR[A].SPIE Proceedings of Radar Sensor Technology[C].Orlando,USA:SPIE Press,1996.48-60.
  • 3M Lundberg,M H Ulander,E Pierson,et al.A challenge problem for detection of targets in foliage[A].SPIE Conference on Algorithms for Synthetic Aperture Radar Imagery[C].Orlando,USA:SPIE Press,2006.1-12.
  • 4R Jame,R Hendrickson.Efficacy of frequency on detecting targets in foliage using incoherent change detection[A].SPIE Conference on Algorithms for Synthetic Aperture Radar Imagery[C].Orlando,USA:SPIE Press,1994.220-229.
  • 5M H Ulander.Modeling of change detection in VHF-and UHF band SAR[A].EUSAR2008[C].Fridrichshafen,Germany:VDE-ITG,2008.127-131.
  • 6M Rignot,J van Zyl.Change detection technique for ERS-1 SAR data[J].IEEE Transactions on Geoscience and Remote Sensing,1993,31(4):896-906.
  • 7I Ranney,M Soumekh.Signal subspace change detection in averaged multilook SAR imagery[J].IEEE Transactions on Geoscience and Remote sensing,2006,44(1):201-213.
  • 8J Lee,W Hoppel,R Miler.Intensity and phase statistics of multilonk polarimetric and interferometric SAR imagery[J].IEEE Transactions on Geoscience and Remote sensing,1994,32(5):1017-1027.
  • 9N Otsu.A threshold selection method from gray-level histogram[J].IEEE Transactions on System,Man and Cybernetics,1979,9(1):62-66.
  • 10T Pun.A new method for gray-level picture thresholding using the entropy of the histogram[J].Signal Processing,1980,2(3):223-237.

共引文献16

同被引文献14

  • 1Richard J R, Srinivas A, Omar A, et al: Image change detection Mgorithms: a systematic survey[J]. IEEE Transactions on Image Processing, 2005, 14(1): 294-307.
  • 2Wu C, Du B, and Zhang L P. Slow feature analysis for change detection in multispectral imagery[J]. IEEE Transactions on Geosciences and Remote Sensing, 2014, 52(5): 2858-2874.
  • 3Guillaume Q, Beatrice P P, Jean-Marie N, et al: MIMOSA: an automatic change detection method for SAR time series [J]. IEEE Transactions on Geosciences and Remote Sensing, 2014, 52(9): 5349-5363.
  • 4Klaxic M N, Claywell B C, Scott G J, et al: GeoCDX: an automated change detection and exploitation system for high resolution satellite imagery[J]. IEEE Transactions on Geoscienees and Remote Sensing, 2013, 51(4): 2067-2086.
  • 5Ulander L M H, Flood B, Frolind P, et al: Change detection of vehicle-sized targets in forest concealment using VHF- and UHF-band SAR[J]. IEEE Aerospace and Electronic Systems Magazine, 2011, 26(7): 30-36.
  • 6Hao M, Shi W Z, Zhang H, et al: Unsupervised change detection with expectation maximization based level set[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(1): 210-214.
  • 7Ma J J, Gong M G, and Zhang Z Q. Wavelet fusion on ratio images for change detection in SAR images[J]. IEEE Geosciences and Remote Sensing Letters, 2012, 9(6): 1122-1126.
  • 8Xu Y, Huo C L, Xiang S M, et al: Robust VHR image change detection based on local features and multi-scale fusion[C]. IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, Canada, 2013: 1991-1995.
  • 9Zheng J and You H. A new model independent method for change detection in multitemporal sat images based on radon transform and Jeffrey divergence[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(1): 91-95.
  • 10Zu K and Cui S Y. Near real-time SAR change detection using CUDA[CI. IEEE International Conference on Geoscience a:d Remote Sensing Symposium, Munich, Germany, 2012: 2004-2007.

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部