期刊文献+

基于混合粒子群算法的网格任务调度 被引量:4

Task Scheduling in Grid Environment Based on Hybrid PSO Algorithm
下载PDF
导出
摘要 减少分布式程序的执行时间是网格调度系统需要解决的重要问题。因分布式程序常建模为DAG图,故该问题又称异构DAG调度问题。在研究网格环境下的任务调度的基础上,提出了一种用于解决DAG任务调度问题的通用混合粒子群优化算法(Common Hybrid Particle Swarm Optimization),简称为CHPSO。该算法将问题的解(粒子)表示为任务的调度优先权向量,采用混合粒子群优化算法探索解空间。实验结果表明,在求解不含孤立点的单个DAG调度问题时,该算法所得解的调度长度仅为HEFT的90%~92%,求解质量与PSGA相当;在多张DAG图(含孤立节点)并发执行的网格环境中,该算法的调度性能明显优于PSGA及文中列出的其它演化计算方法。 Reducing execution time of distributed program is a major issue of grid scheduling system.Because scheduled programs are modeled by DAG,this problem is called Heterogeneous DAG scheduling problem also.Based on the research of task scheduling in grid environment,an algorithm named common hybrid particle swarm optimization(CHPSO) was proposed to solve the DAG scheduling problem.The algorithm presents the solution of the problem(particles) as a priority vector of the scheduling task and utilizes the hybrid PSO algorithm to explore solution space.Experimental result indicates that,in pure DAG scheduling which has no isolate task node,the CHPSO can get a scheduling length only 90%~92% of HEFT algorithm and as good as PSGA,but in grid environment where multi DAG graphs are concurrently executed,this algorithm performs obviously better than PSGA and other evolutionary computation listed in this paper.
出处 《计算机科学》 CSCD 北大核心 2012年第2期18-21,共4页 Computer Science
基金 国防基础研究计划基金项目(A1420080182)资助
关键词 网格 DAG调度 粒子群优化算法 Grid DAG scheduling Particle swarm optimization
  • 相关文献

参考文献1

二级参考文献10

  • 1Dorigo M.Optimization,Learning and Natural Algorithms[]..1992
  • 2Marco D,Mauro B,Thomas S.Ant Colony Optimization:Artifi-cial Ants as a Computational Intelligence Technique[].IEEEComputational Intelligence Magazine.2006
  • 3Udo H,Wolfram S.A Comprehensive Test Bench for the Evalua-tion of Scheduling Heuristics[].Procof the th InternationalConference on Parallel and Distributed Computing and Systems (PDCS’).2004
  • 4Xiao H K,Jun S,Wen B X.Permutation-based particle swarmalgorithm for tasks scheduling in heterogeneous systems withcommunication delays[].International Journal of ComputationalIntelligence Research.2008
  • 5Ullman JD.NP-complete scheduling problems[].Journal of Computer and System Sciences.1975
  • 6Correa R C,Ferreira A,Rebreyend P.Scheduling multiprocessor tasks with genetic algorithms[].IEEE Transactions on Parallel and Distributed Systems.1999
  • 7Topcuoglu H,Hariri S,Wu M Y.Performance-effective and low-complexity task scheduling for heterogeneous computing[].IEEE Transactions on Parallel and Distributed Systems.2002
  • 8Hou ESH,Ansari N,Ren H.A genetic algorithm for multiprocessor scheduling[].IEEE Transactions on Parallel and Distributed Systems.1994
  • 9Wei-Neng Chen,Jun Zhang.An Ant Colony Optimization Approach to a Grid Workflow Scheduling Problem With Various Qos Requirements[].IEEE Transactions on Systems Man and Cybernetics.2009
  • 10Bajaj R,Agrawal D P.Improving Scheduling of Tasks in a Heterogeneous Environment[].IEEE Transactions on Parallel and Distributed Systems.2004

共引文献1

同被引文献54

  • 1罗红,慕德俊,邓智群,王晓东.网格计算中任务调度研究综述[J].计算机应用研究,2005,22(5):16-19. 被引量:61
  • 2高尚,杨静宇.多处理机调度问题的粒子群优化算法[J].计算机工程与应用,2005,41(27):72-73. 被引量:13
  • 3李济泽.基于粒子群遗传优化算法的多机器人任务分配研究[J].机械与电子,2007,25(10):45-48. 被引量:4
  • 4Kyung-Hyun C,Dong-Soo K,Yang-Hoi D.Multi-agent based task assignment system for virtual enterprises[J].Robotics and Computer Integrated Manufacturing,2007,23 : 624-629.
  • 5Shen Chenglin.Decision models of task assignment for virtual enterprise based on multi-agent theory[C]//Proceedings Inter- national Conference on Management and Service Science, 2009.
  • 6Lin W,Bymes C.Control of discrete-time nonlinear system[J]. IEEE Transactions on Automatic Control,1996,41(4):494-510.
  • 7Angeline P J.Evolutionary optimization versus particle swarm optimization : philosophy and performance difference[C]// Proc of the 7th Annual Conf on Evolutionary Programming, Germany, 1998.
  • 8Ertuqrul I, Karakasoqlu N.Performance evaluation of Turkish cement firms with fuzzy analytic hierarchy process and TOPSIS methods[J].Expert Systems with Application,2009, 36( 1 ) : 702-715.
  • 9Kwok Y K, Ahmad I. Static scheduling algorithms for allocating directed task graphs to multiprocessors[J]. ACM Computing Surveys (CSUR), 1999,31 (4): 406-471.
  • 10Daoud M I,Kharma N. A high performance algorithm for static task scheduling in heterogeneous distributed computing systems [J]. Journal of Parallel and Distributed Computing, 2008, 68 (4) : 399-409.

引证文献4

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部