期刊文献+

大幅面多光谱遥感图像快速自动配准 被引量:6

Fast and Automatic Registration Method for Large Multi-spectral Remote Sensing Images
下载PDF
导出
摘要 针对大幅面多光谱遥感图像的配准需求,提出一种基于特征点的快速全自动配准方法。由于多光谱遥感图像的尺寸较大,计算量大,因此提出特征网格理论,即根据图像灰度值、信息熵值及特征分布均匀性准则,在二级规则网格中选取特征网格参与后续运算,以减小计算量。同时,该理论为SIFT(Scale Invariant Feature Transform)特征点提取算法的并行运行及特征点初匹配方法的改进提供了条件,提高了算法的效率及配准精度。利用本算法对CBERS-02B拍摄的遥感图像进行了实验。结果表明,该方法能够达到亚像素级配准精度,且计算速度快,能够满足大幅面遥感图像处理的要求。 Aiming at the registration of large multi-spectral remote sensing images,a fast and automatic registration method based on feature points was proposed.Because the size of the multi-spectral remote sensing image is quite large,and the amount of calculation is also very great,the theory of feature grid based on grey value,entropy and uniformity principle was proposed.Feature grids chosen from a two-degree regular mesh are calculated in the subsequent process to reduce the calculation.Meanwhile,the theory provides condition for detecting SIFT(Scale Invariant Feature Transform) feature points parallelly,and for improving the primary feature matching step,so the efficiency and accuracy are increased.The proposed method was applied to remote sensing images taken by CBERS-02B.The experimental results with large remote sensing images clearly indicate that the proposed approach can achieve sub-pixel precision,decrease the runtime of the process,and the requirement of large remote sensing image process is satisfied.
出处 《计算机科学》 CSCD 北大核心 2012年第2期61-65,共5页 Computer Science
基金 国家自然科学基金(61003108)资助
关键词 遥感图像 特征网格 SIFT Remote sensing images Feature grid SIFT
  • 相关文献

参考文献6

二级参考文献54

  • 1崔江涛,刘卫光,周利华.一种多分辨率高维图像特征匹配算法[J].光子学报,2005,34(1):138-141. 被引量:12
  • 2陈乐,吕文阁,丁少华.角点检测技术研究进展[J].自动化技术与应用,2005,24(5):1-4. 被引量:45
  • 3徐正光,田清,张利欣.图像拼接方法探讨[J].微计算机信息,2006,22(10X):255-256. 被引量:25
  • 4王向军,王研,李智.基于特征角点的目标跟踪和快速识别算法研究[J].光学学报,2007,27(2):360-364. 被引量:48
  • 5陶茂垣,卢正鼎,袁武钢,凌贺飞,邹复好.基于图像尺度空间的几何不变特征点提取算法[J].电子学报,2006,34(B12):2564-2568. 被引量:8
  • 6Richard Szeliski. Video mosaics for virtual environments[J ]. IEEE Computer Graphics and Applications, 1996, 16(2) : 22-30
  • 7Zhengwei Yang, F. S. Cohen. Image registration and object recognition using affine invariants and convex hulls[J]. IEEE Trans. on Image Processing, 1999, 8(7): 934-946
  • 8Zhengyou Zhang, Rachid Deriche, Olivier Faugeras et al.. A robust technique for matching two uncalibrated images through the recovery of the unknown epipolar geometry [ R]. INRIA Sophia-Antipolis, 1994. 1-38
  • 9C. Harris, M. Stephens. A combined corner and edge detector [C]. Proceedings of Fourth Alvey Vision Conference, UK, 1988. 147-151
  • 10Luigi Di Stefano, Stefano Mattoccia, Martino Mola. An efficient algorithm for exhaustive template matching based on normalized cross correlation [ C ]. Proceedings of the 12th International Conference on Image Analysis and Processing, Los Atamitos CA, USA, 2003. 322-327

共引文献199

同被引文献55

  • 1李晓明,郑链,胡占义.基于SIFT特征的遥感影像自动配准[J].遥感学报,2006,10(6):885-892. 被引量:154
  • 2Anthony A, Lofffeld 0. Image Registration Using a Com-bination of Mutual Information and Spatial Information[C]. IEEE International Conference on Geoscience andRemote Sensing Symposium. Colorado, U. S. A, 2006:4012-4016.
  • 3Kern J P, Pattichis M S. Robust Multispectral ImageRegistration Using Mutual-Information Models [ J ]. IEEETransaction on Geoscience and Remote Sensing. 2007,45(5) : 1494-1505.
  • 4Padfield D, Masked Object Registration in the FourierDomain [ J ]. IEEE Transaction on Image Processing.2012,21(5) : 2706-2718.
  • 5YU Le,ZHANG Deng-rong,Holden E-J. A fast and full-y automatic registration approach based on point featuresfor multi-source remote-sensing images [ J ] . Computers &Geosciences. 2008, 34(7) ; 834-848.
  • 6LIN Hui, DU Pei-jun, ZHAO Wei-chang, et al. SUNHua-sheng, Image Registration Based on Comer Detec-tion And Affine Transformation [ C ]. 3rd InternationalCongress on Image and Signal Processing (CISP). 2010,5:2184-2188.
  • 7ZHANG Kai,LI Xu-zhi, ZHANG Jiu-xing. A Robustistration[ J]. IEEE Geoscience and Remote Sensing Let-ters. 2013,pp (99): 1-5.
  • 8Lowe D G. Object recognition from local scale-invariantfeatures [ C ]. International Conference on Computer Vi-sion. Corfu, Greece, 1999 : 1150-1157.
  • 9Lowe D G. Distinctive image features from scale2invariantkey-points [ J ]. International Journal of Computer Vi-sion. 2004 , 60(2) : 91-110.
  • 10PLUIM J P W. Mutual information based registration ofmedical images: a survey [ J ]. IEEE Transactions onMedical Imaging. 2003, 22(8) ; 986-1004.

引证文献6

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部