期刊文献+

基于图割与概率图谱的肝脏自动分割研究 被引量:2

Automatic Liver Segmentation Using Graph Cuts and Probabilistic Atlas
下载PDF
导出
摘要 提出一种利用均值漂移算法做预处理,将概率图谱与图割算法相结合的肝脏自动分割方法。该方法一方面有效利用概率图谱所代表的形状信息,并且以无参形状建模;另一方面,均值漂移算法对灰度和形状信息组成的综合信息进行过分割处理,利用过分割的区域代替单个像素参与图割算法,降低了优化算法的复杂度。实验结果表明,该方法有效结合了概率图谱和均值漂移算法的优点,提高了图割算法的精度和速度。 The paper proposed a method for automatic liver segmentation.Firstly mean shift algorithm was used in a preprocess step,and then graph cuts and probabilistic atlas algorithm were combined to segment the liver.This method has some advantages,for one thing,it makes good use of the shape information contained in probabilistic atlas and pro-babilistic atlas method is a non-parametric model,for another,mean shift algorithm processes the composite information,including gray value and shape index,and then pixels are replaced by super-pixel to reduce the computational complexities of graph cuts algorithm.Experiment results show that the proposed method possesses the nice properties of the mean shift and probabilistic atlas method,and is both efficient and accurate.
出处 《计算机科学》 CSCD 北大核心 2012年第2期288-290,共3页 Computer Science
基金 国家自然科学基金(60603027)资助
关键词 图割 均值漂移 肝脏分割 概率图谱 Graph cuts Mean shift Liver segmentation Probabilistic atlas
  • 相关文献

参考文献11

  • 1Heimann T,Wolf I,Meinzer H P.Active shape models for afully automatic 3-D segmentation of the liver[C]∥InternationalConference on Medical Image Computering and Computer Assis-ted Intervention(MICCAI).Copenhagen,Denmark,2006:41-48.
  • 2Park H,Bland P,Meyer C.Construction of an abdominal proba-bilistic atlas and its application in segmentation[J].IEEE Tran-sactions on Medical Imaging,2003,22(4):483-492.
  • 3Freedman D,Zhang I J.Interactive graph cuts based segmenta-tion with shape priors[C]∥IEEE Computer Society Conferenceon Computer Vision and Pattern Recognition.San Diego,USA,2005(2):939-946.
  • 4Veksler O.Star Shape Prior for Graph-cut Image Segmentation[C]∥European Conference on Computer Vision.Marseille,France,2008(3):454-467.
  • 5刘陈,李凤霞,张艳.基于图割与泛形信息的对象分割方法[J].计算机辅助设计与图形学学报,2009,21(12):1753-1760. 被引量:11
  • 6Aslan M,Ali A,Farag A,et al.3DVertebral Body SegmentationUsing Shape-based Graph Cuts[C]∥International Conferenceon Pattern Recognition.2010,Ⅰ:3951-3954.
  • 7刘技,康晓东,贾富仓.基于图割与均值漂移算法的脊椎骨自动分割[J].计算机应用,2011,31(3):760-762. 被引量:7
  • 8Freiman M,Kronman A,Esses S J,et al.Non-parametric Itera-tive Model Constraint Graph Min-cut for Automatic Kidney Seg-menttion[C]∥International Conference on Medical Image Com-putering and Computer Assisted Intervention(MICCAI).Bei-jing,China,part III,2010:73-80.
  • 9Boykoy Y,Funka-lea G.Graph Cuts and Efficient N-D ImageSegmentation[J].International Journal of Computer Vision,2006,70(2):109-131.
  • 10Klein S,Staring M,Murphy K,et al.elastix:a Toolbox for In-tensity Based Medical Image Registration[J].IEEE Transac-tions on Medical Imaging,2010,29(1):196-205.

二级参考文献28

  • 1Kass M, Witkin A, Terzopoulos D. Snakes: active contour models [J]. International Journal of Computer Vision, 1988, 1(4):321-331.
  • 2Adobe Systems Incorporation. Using Adobe Photoshop cs4 [OL]. [2009-03-09]. http://help. adobe. com/en_US/ Photoshop/11.0/index. html.
  • 3Vezhnevets V, Konouchine V. "Growcut "-interactive multi-label N D image segmentation by cellular automata [OL]. [2009-03-09]. http://www. graphicon. ru/2005/ proceedings/papers/VezhntvetsKonushin. pdf.
  • 4Grady L. Random walks for image segmentation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(11): 31768-1783.
  • 5Boykov Y Y, Jolly M P. Interactive graph cuts for optimal boundary & region segmentation of objects in N D images [C]//Proceedings of International Conference on Computer Vision, Vancouver, 2001, 1:105-112.
  • 6Rother C, Kolmogorov V, Blake A. "Grabcut"-interactive foreground extraction using iterated graph cuts [J]. ACM Transactions on Graphics, 2004, 23(3): 309-314.
  • 7Li Y, Sun J, Tang C K, et al. Lazy Snapping [C] // Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH, Los Angeles, 2004: 303-308.
  • 8Boykov Y, Kolmogorov V. An experimental comparison of rain cut/max-flow algorithms for energy minimization in vision [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(9): 1124-1137.
  • 9Kohli P, Torr P H S. Dynamic graph cuts for efficient inference in Markov random fields [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29 (12): 2079-2088.
  • 10Kolmogorov V, Zabih R. What energy functions can be minimized via graph cuts? [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26 (2): 147-159.

共引文献16

同被引文献28

  • 1薛志东,隋卫平,李利军.一种SVM与区域生长相结合的图像分割方法[J].计算机应用,2007,27(2):463-465. 被引量:8
  • 2ISABELLE B. Duality vs. adjunction for fuzzy mathe- matical morphology and general form of fuzzy erosions and dilations[ J ]. Fuzzy Sets and Systems, 2009,160: 1558-1867.
  • 3ZHANG H,FRITI'S J E. Image segmentation evaluation: A survey of unsupervised methods [ J ]. Computer Vision and Image Understanding, 2008,110 (2) : 260-280.
  • 4HEIMANN T, GINNEKEN B, MARTIN A. Comparison and evaluation of methods for liver segmentation from CT datasets [ J ]. IEEE Transactions on Medical Imaging, 2009,28 ( 8 ) : 1251-1265.
  • 5LIN D T,LEI C C,HUNG S W. Computer-aided kidney seg- mentation on abdominal CT images [ J ]. IEEE Trans on In- formation Technology in Biomedicine ,2006,10 ( 1 ) :59-65.
  • 6SELVER M A, KOCAOGLU A, DEMIR G K. Patient ori- ented and robust automatic liver segmentation for pre-evaluation of liver transplantation [ J ]. Computers in Biology and Medicine ,2008,38 (7) :756-784.
  • 7GILHUIJS K G, VANDEVEN P J, VANHERH M. Automatic three dimensional inspection of patient setup in radiation therapy using portal images, simulator images, and computed tomography data[ J]. Med. Phys., 1996,23 (3) : 389-399.
  • 8ARCHIP N, ERARD P J, EGMONT-PETERSEN M. A knowledge-based approach to automatic detection of the spinal cord in CT images [ J ]. IEEE Trans. On Medical Imaging, 2002,21 ( 12 ) : 1504 -1516.
  • 9HELD M. VRONI:An engineering approach to the relia- ble and efficient computation of Voronoi diagrams of points and line segments [ J ]. Computational Geometry, 2001,18 ( 1 ) :95-123.
  • 10NAEGEL B. Using mathero, atical morphology for the anatomical labeling of vertebrae from 3D CT-scan images [ J ]. Computer- ized Medical Imaging and Graphics ,2007,31 (3) :141-156.

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部