期刊文献+

基于局部阈值和聚类中心迭代的肺结节检测算法 被引量:5

Pulmonary Nodules Detection Algorithm Based on Local Threshold and Iterative of Clustering Center
下载PDF
导出
摘要 肺部疾病通常以肺结节的形式表现出来。为了对肺部疾病进行诊断治疗,需要对肺结节进行准确的检测。提出了基于局部阈值和聚类中心迭代的肺结节检测算法。首先,对肺实质图像采用局部阈值算法,提取感兴趣区域(ROIs),并且计算ROIs的形态特征、灰度特征和纹理特征;其次,结合规则、聚类中心迭代和欧式距离,对ROIs进行分类。实验结果表明,所提算法能够较好地检测出孤立性结节、低对比度结节和粘连肺壁结节。 Lung disease is usually showed in the form of pulmonary nodules.In order to diagnose lung disease,pulmonary nodules must be detected accuratly.This paper proposed pulmonary nodules detection algorithm based on local threshold and iterative of clustering center.First,local algorithm was proposed for extracting interested region(ROIs) in lung parenchyma image.Morphological features,gray features and texture features were calculated in interested region(ROIs).Second,rule,iterative algorithm of clustering center and Euclidean distance were used to classing ROIs.Experiment results show that the proposed algorithm can better detect isolation nodules,low contrast nodules and nodules which adhere to lung wall.
出处 《计算机科学》 CSCD 北大核心 2012年第2期302-304,共3页 Computer Science
基金 广东省教育部产学研结合项目(2009B090300057) 教育部博士点基金资助项目(200805610018) 广州市番禺区科技攻关项目(2009-Z-108-1) 华南理工大学中央高校基本科研业务费(2009ZM0077)资助
关键词 肺结节 局部阈值 聚类中心迭代 欧式距离 Pulmonary nodules Local threshold Iterative of clustering center Euclidean distance
  • 相关文献

参考文献10

  • 1American Cancer Society.Cancer facts and figures 2005[EB/OL].http://www.cancer.org.
  • 2Liu Y,Yang J Z,et al.A Method of Pulmonary Nodule Detec-tion Utilizing Multiple Support Vector Machines[C]∥IEEE In-ternation Conference on Computer Application and System Mod-eling.2010,v10-118-v1-1216.
  • 3Noriaki M,Hyoungseop K,Yoshiinori I,et al.Automatic Detec-tion of Lung Nodules in Tmporal Subtraction Images by Use ofShape and Denisty Features[C]∥IEEE Fourth InternationConference on Innovative Computing.2009:1288-1292.
  • 4Zhao B,Gamsu G,Ginsburg M S.Automatic detection of smalllung nodules on CT utilizing a local density maximum algorithm[J].J Appl Clin Med Phys,2003,4(3):248-260.
  • 5Li Q.Recent progress in computer-aided diagnosis of lung no-dules on thin-section CT[J].Computerized Medical Imaging andGraphics,2007,31(4/5):248-257.
  • 6Baek T,Kim J S,Na Y H,et al.Pulmonary Nodules:AutomatedDetection on CT Images with Morphologic Matching Algorithm-Preliminary Results[C]∥Radiology.2005,236:259-299.
  • 7Dehmeshki J,Ye X,Lin X,et al.Automated detection of lungnodules in CT images using shape-based genetic algorithm[J].Computerized Medical Imaging and Graphics,2007,31(6):408-417.
  • 8Dehmeshiki J,Ye X,et al.A Hybrid Approach for AutomatedDetection of Lung Nodules in CT Images[C]∥IEEE Interna-tional Symposium on Biomedical Imaging:Macro to Nano.2006:506-509.
  • 9Tong L J,Chen K,et al.Document Image Binarization Based onNFCM[C]∥IEEE Confence Image and Signal Processing.2009:1-5.
  • 10Zhang J,Li B,Tian L F.Lung nodule classification combiningrule-based and SVM[C]∥5th IEEE International conferenceon Bio-Inspired Computing:Theories and Appications(BIC-TA).2010,2:1033-1036.

同被引文献47

  • 1石羽,曹晓光,张弘,张晓鹏.肺结节自动检测算法研究[J].仪器仪表学报,2006,27(z3):2265-2267. 被引量:7
  • 2Traffic Management Bureau of Ministry of Public Security. 2009 national road traffic accident lOLl. http://www.mps.gov.cn/n16/n1252/n1837/n2557/2276407.html, 2010.
  • 3Borhade S, Shah M, Jadhav P, et al. Advanced driver assistance system [C]. Proceedings of International Con- ference on Sensing Technology ( ICST). Kolkata, India, 2012: 718-722.
  • 4Olmeda D, de la Escalera A, Armingol :] M. Contrast invariant features for human detection in far infrared images [C]. Proceedings of IEEE Intelligent Vehicles Symposium (IV). Alcala de Henares, Spain, 2012: 117-122.
  • 5Cutler R, Davis L S. Robust real-time periodic motion detection, analysis and applications [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8): 781-796.
  • 6Olmeda D, de la Escalera A, Armingol J M. Detection and tracking of pedestrians in infrared images [C]. Proceeding of International Conference on Signals, Circuits and Systems (SCS). Medenine, Tunisia: IEEE, 2009: 1-6.
  • 7Nanda H, Davis L. Probabilistic template based pedestrian detection in infrared videos [C]. Proceedings of IEEE Intelligent Vehicle Symposium (IV), Versailles, France: IEEE, 2002: 15-20.
  • 8Ge J F, Luo Y P, Gyomei T. Real-time pedestrian detection and tracking at nighttime for driver-assistance systems [J]. IEEE Transactions on Intelligent Transportation Systems, 2009, 10(2): 283-298.
  • 9Yang Kun, Zeng Libo, Wang Diancheag. A fast arithmetic for the erosion and dilation operations of mathematical morphology [J].计算机工程与应用,2011,34:54—56.
  • 10Gavrila D M. A Bayesian, exemplar-based approach to hierarchical shape matching [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(8): 1408-1421.

引证文献5

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部