期刊文献+

CO激光在非线性晶体ZnGeP_2和GaSe中的混频效应(英文) 被引量:1

CO laser frequency mixing in nonlinear crystals ZnGeP_2 and GaSe
下载PDF
导出
摘要 为了获得2.15~1 500μm的相干光源,研究了CO激光在高质量非线性晶体ZnGeP2和GaSe中的混频效应。为了提高转换效率,在激光锁模方式下对CO激光器的二次谐波、和频和差频的产生进行了研究。结果显示,利用GaSe晶体和ZnGeP2晶体,调Q多谱线CO激光辐射的谱线内倍频效率分别大于0.3%和1.1%。采用ZnGeP2晶体进行倍频时,可调谐锁膜CO激光器的转换效率为12.5%。模拟结果显示,二次谐波与和频产生的输出光谱相同。相邻谱线下,和频和差频的产生过程中,基波和一次谐波可以分别在4.0~5.0μm和100~≥1 200μm(太赫兹范围)形成振荡。利用锁模CO激光器在ZnGeP2晶体中的混频效应,可以得到2.15~≥1 500μm的相干光源,同时转换效率可达到甚至高于12.5%。 The CO laser frequency mixing in high-quality ZnGeP2 and GaSe crystals is studied to obtain the 2.15-1 500 μm coherent sources.Secondary Harmonic Generation(SHG),sum-and difference frequency generations are considered as a method for the CO laser frequency mixing and the mode-locking as an efficient way to improve the mixing efficiency.Results show that the internal SHG efficiency of Q-switched multiline CO laser radiation has exceeded by 0.3% for GaSe crystal and has reached by 1.1 % for ZnGeP2 crystal.When the SHG is in ZnGeP2,the internal efficiency of electron beam sustained discharge frequency-tunable mode-locking CO laser is up to 12.5 %.Simultaneous SHG and sum frequency generation show the same output spectrum.It is shown by modeling that the sum and difference frequency generations of neighboring lines of both fundamental and first overtone bands can allow one to get the oscillation,respectively,at 4.0-5.0 μm and 100-≥1 200 μm(THz).In conclusions,the frequency mixing of mode-locked CO laser emission lines in ZnGeP2 crystals allows some one to design 2.15-≥1 500 μm coherent sources with the power frequency conversion efficiency up to or over 12.5%.
出处 《光学精密工程》 EI CAS CSCD 北大核心 2012年第2期277-286,共10页 Optics and Precision Engineering
基金 Laboratory Foundation No.SKLIM090301 CIOMP and Presidium SB RAS under 30.3.2 Project of 30.3 Program
关键词 非线性晶体 ZnGeP2晶体 GaSe晶体 混频效应 脉冲CO激光 锁模 nonlinear crystal ZnGeP2 crystal GaSe crystal frequency conversion pulsed CO laser mode-locking
  • 相关文献

参考文献19

  • 1IONIN A A.Gas lasers .Florida:CRC Press-Taylor and Francis Group, Boca Raton, 2007.
  • 2BASOV N G, IONIN A A, KOTKOV A A, et al..Pulsed laser operating on the first vibrational overtone of the CO molecule in the 2.5-4.2 μm range: I.Multifrequency lasing[J].Quantum Electronics, 2000, 30(9):771-777.(in Russian).
  • 3BASOV N G, IONIN A A, KOTKOV A A, et al..Pulsed laser operating on the first overtone of the CO molecule in the 2.5-4.2 μm range: II.Frequency-selective lasing[J].Quantum Electronics, 2000, 30(10):859-866.
  • 4BASOV N G, HAGER G D, IONIN A A, et al..Efficient pulsed first-overtone CO laser operating within the spectral range of 2.5-4.2 μm[J].IEEE J.Quant.Electron, 2000, 36(7):810-823.
  • 5ANDREEV YU M, VOEVODIN V G,GRYBEN-YUKOV A I, et al..Efficient generation of the second harmonic of tunable CO2 laser radiation in ZnGeP2[J].Sov.J.Quant.Electron, 1984, 14(8):1021-1022.
  • 6BOYD G D, GANDRUB W B, BUEHLER E.Phase-matched up conversion of 10.6 μm radiation in ZnGeP2[J].Appl.Phys.Lett, 1971, 18(10):446-448.
  • 7BOYD G D, BRIDGES T J, PATEL C K N, et al..Phase-matched submillimeter wave generation by difference-frequency mixing in ZnGeP2[J].J.Appl.Phys.Lett, 1972, 21(11):553-555.
  • 8ANDREEV Y M, BARANOV V Y, VOEVODIN V G, et al..Efficient generation of the second harmonic of a nanosecond CO2 laser radiation pulse[J].Sov.J.Quant.Electron, 1987, 17(11):1435-1436.
  • 9ANDREEV YU M, VEDERNIKOVA T V, BETIN A A, et al..Conversion of CO2 and CO laser radiations in a ZnGeP2 crystal to the 2.3-3.1 μm spectral range[J].Sov.J.Quant.Electron, 1985, 15(7):1014-1015.
  • 10ANDREEV Y M, BELYKH A D, VOEVODIN V G, et al..Doubling of the emission frequency of CO lasers with an efficiency of 3%[J].Sov.J.Quant.Electron, 1987, 17(4): 490-491.

同被引文献13

  • 1赵书安,冯少彤,王小芳,聂守平,王鸣.利用二波耦合实现微振动测量[J].激光杂志,2006,27(5):49-50. 被引量:2
  • 2ROMASHKO R V,DI GIROLAMO S, KUI.CHIN Y N, et al.. Fast-adaptive fiber optic sensor for ultra-small vibration and deformation measurement F C]. Journal of Physics: Conference Series, lOP Publishing, 2007,85 ( 1 ) : 012024.
  • 3KLEIN M B, SHCHERIN K. Adaptive receivers for laser ultrasonics using photorefractive CdTe [C]. Conference on Lasers and Electro-Optics, Optical Society of America, 2003 : CFK1.
  • 4DE OLIVERA I, FREJLICH J. Photorefractive holography for 2D mechanical vibrations measure ment [C]. Latin America Optics and PhotonicsConference, Optical Society of America, 2012: LM2A. 6.
  • 5XIONG J, GLORIEUX C. Spectrally resolved detection of mixed acoustic vibrations by photo- refractive interferometry[J]. Journal of Applied Physics,2013,113(5):054502 054502 11.
  • 6LAFOND E F, BRODEUR P H, GERHARDSTEIN J P, et al., Photorefractive interferometers for ultrasonic measurements on paper[J].UZtrason- ics, 2002,40 ( INEEL/JOU-00-00021 ).
  • 7HONG J H,SAXENA R. Diffraction efficiency of volume holograms written by coupled beams[J]. Optics Letters, 1991,16(3) : 180-182.
  • 8刘艳,苏东奇,杨怀江,隋永新.高精度干涉检验移相算法对振动误差的免疫能力[J].中国光学与应用光学,2010,3(5):500-508. 被引量:4
  • 9姚峰林,高世桥.基于高速摄影动态测试微陀螺振动[J].光学精密工程,2012,20(1):165-170. 被引量:6
  • 10张斌,冯其波,由凤玲,高晓婧.基于BSO晶体的振动测量系统[J].光学学报,2012,32(3):90-94. 被引量:5

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部