期刊文献+

行程时间异常值处理方法研究 被引量:17

Research on the Filtering Method for Travel Time Outliers
下载PDF
导出
摘要 基于车牌识别数据可以得到较为准确的行程时间数据,但是由于识别系统自身原因、驾驶员路径选择行为、停车行为等因素的影响,行程时间数据中存在不少的异常值,剔除异常值才能将所得数据应用于实际研究和服务.在详细分析了行程时间异常值产生原因的基础上,提出了基于异常值数据表现以及行程时间分布特征的异常值剔除方法,最后以北京市的车牌识别系统数据为例,验证了方法的适用性. The accurate travel time can be derived from data of license plate recognition system.Outliers can be expected due to the system′s identification error,drivers' route choices and stopping activities.It is essential to filter the outliers before travel time data are used in research and services.After analyzing the causes of outliers,a filtering method was proposed based on the behaviors of outliers and distribution of travel time.To verify the application of the new method,the license plate recognition data of Beijing were used.
出处 《武汉理工大学学报(交通科学与工程版)》 2012年第1期116-119,共4页 Journal of Wuhan University of Technology(Transportation Science & Engineering)
基金 智能交通技术交通行业重点实验室开放基金
关键词 车牌识别数据 行程时间 异常值处理 标准差 绝对偏差 data of license plate recognition system travel time outlier filtering standard deviation absolute deviation
  • 相关文献

参考文献3

二级参考文献2

共引文献7

同被引文献93

  • 1Zheng Binxiang,Du Xiuhua & Xi Yugeng Institute of Automation, Shanghai Jiaotong University,Shanghai 200030,P.R.China.Outliers Mining in Time Series Data Sets[J].Journal of Systems Engineering and Electronics,2002,13(1):93-97. 被引量:3
  • 2杨晓光,蔡润林,庄斌.基于车牌自动识别系统的城市道路行程时间预测算法[J].交通与计算机,2005,23(3):29-32. 被引量:12
  • 3戴树贵,陈文兰.一个求解k短路径实用算法[J].计算机工程与应用,2005,41(36):63-65. 被引量:20
  • 4北京市社会科学院.2010-2011北京城乡发展报告[R].北京:北京市社会科学院,2011.
  • 5FUJITA T, YAO E. Travel time prediction using probe-car data[C]. 13th World Congress on ITS, 2006.
  • 6ZHAO Y. Vehicle location and navigation system [M]. Norwood, MA: Artech House Publishers,1997.
  • 7van AERDE M, HELLINGA B, YU L, et al. Vehicle proves as real-time ATMS sources of dynamic O-D and travel time data [C]. Large Urban Systems- Proc. , ATMS Conf,1993:207-230.
  • 8SANWAL K K, WALRAND J. Vehicles as probes, Report No. UCB-ITS-PWP-95-11, California PATH Program [R]. Institute of Transportation Studies, University of California, Berkeley, 1995 : 34-36.
  • 9GAO Y, ER M J. NARMAX time series model pre- diction., feed-forward and recurrent fuzzy neural net- work approaches[J]. Fuzzy Sets and Systems,2005, 150(2) :331-350.
  • 10YIN HB, WONGSC, XUJ M, etal. Urban traffic flow prediction using a fuzzy-neural approach[J]. Transportation Research Part C, 2002,10 ( 2 ) : 85-98.

引证文献17

二级引证文献60

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部