期刊文献+

Lagrange插值在一重积分Wiener空间下的平均误差 被引量:2

Average errors for Lagrange interpolation on 1-fold integrated Wiener space
下载PDF
导出
摘要 在加权L2范数逼近意义下确定了基于扩充的第一类Chebyshev结点组的Lagrange插值多项式列在一重积分Wiener空间下平均误差的强渐近阶. For the weighted approximation in L2-norm, the strongly asymptotic order for the average errors of Lagrange interpolation sequence based on the extended Chebyshev nodes of the first kind on the 1-fold integrated Wiener space is determined.
出处 《天津师范大学学报(自然科学版)》 CAS 2012年第1期22-25,共4页 Journal of Tianjin Normal University:Natural Science Edition
关键词 LAGRANGE插值 加权L2范数 一重积分Wiener空间 平均误差 Chebyshev结点组 Lagrange interpolation weighted L2-norm 1-fold integrated Wiener space average errors Chebyshev nodes
  • 相关文献

参考文献4

二级参考文献10

  • 1XU GuiQiao,DU YingFang.The average errors for Hermite-Fejr interpolation on the Wiener space[J].Science China Mathematics,2010,53(7):1837-1848. 被引量:14
  • 2Traub J. F., Wasilkowski G. W., Wozniakowski H., Information-Based complexity, New York: Academic Press, 1988.
  • 3Ritter K., Approximation and optimization on the wiener space, J. Complexity, 1990, 6: 337-364.
  • 4Hickernell F. J., Wozniakowski H., Integration and approximation in arbitrary dimensions, Adv. Comput. Math., 2000, 12: 25-58.
  • 5Kon M., Plaskota L., Information-based nonlinear approximation: an average case setting, J. Complexity, 2005, 21: 211-229.
  • 6Erdos P., Feldheim F., Sur le mode de convergence pour l'interpolation de Lagrange, C. R. Acad. Sci. Paris Ser. L Ma. th., 1936, 203: 913-915.
  • 7Fejer L., Uber interpolation, Gottinger Nachr, 1916: 66-91.
  • 8Fejer L., Lagrangesche interPolation und zugehorigen konjugierten punkte, Math. Ann., 1932, 106: 1-55.
  • 9Sun Y. S., Wang C. Y., Average error bounds of best approximation of continuous functions on the Wiener space, J. Complezity, 1995, 11: 74-104.
  • 10Karma A. K., Prasad J., An analogue of a problem of P. Eros and E. Feldheim on Lp convergence of interpolatory processes, J. Approx. Theory, 1989, 56: 225-240.

共引文献23

同被引文献10

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部