期刊文献+

基于动态项集计数的加权频繁项集算法 被引量:1

Weighted Frequent Itemset Algorithm Based on Dynamic Itemset Counting
下载PDF
导出
摘要 基于Apriori的加权频繁项集挖掘算法存在扫描数据集次数多的问题。为此,提出一种基于动态项集计数的加权频繁项集算法。该算法采用权值键树的数据结构和动态项集计数的方法,满足向下闭合特性,并且动态生成候选频繁项集,从而减少扫描数据集的次数。实验结果证明,该算法生成的加权频繁项集具有较高的效率和时间性能。 The existing weighted fiequent itemset mining algorithms which are based on Apriori require multiple dataset scans. This paper proposes a weighted frequent itemset algorithm weighted frequent itemset mining based on dynamic itemset counting which uses the structure of weighted trie tree and the method of dynamic itemset counting. This algorithm satisfies the downward closure property and dynamically generates candidate frequent itemsets, thereby reduces the number of scanning datasets and improves the performance. Experimental results show that the proposed algorithm not only generates the weighted frequent itemsets, but also has high efficiency and time performance.
出处 《计算机工程》 CAS CSCD 2012年第3期31-33,共3页 Computer Engineering
基金 国家"863"计划基金资助项目(2007AA040702)
关键词 数据挖掘 加权频繁项集挖掘 动态项集计数 加权支持度 权值键树 向下闭合特性 最大权值 data mining weighted frequent itemset mining dynamic itemset counting weighted support degree weighted trie tree downwardclosure property maximum weight
  • 相关文献

参考文献8

  • 1Wang Wei, Yang Jiong, Yu P S. WAR: Weighted Association Rules for Item Intensities[J]. Knowledge Information and Systems, 2004, 6(2): 203-229.
  • 2Tao F. Weighted Association Rule Mining Using Weighted Support and Significant Framework[C] //Proc. of the 9th ACM SIGKDD’03. [S. 1.] : ACM Press, 2003: 661-666.
  • 3Ahmed C, Taneer S, Jeong B, et al. Mining Weighted Frequent Patterns in Incremental Databases[C] //Proc. of PRICAI’08. Hanoi, Vietnam: [s. n.] , 2008: 933-938.
  • 4Yun U, Leggett J J. WFIM: Weighted Frequent Itemset Mining with a Weight Range and a Minimum Weight[C] //Proc. of the 4th SIAM Int’1 Conf. on Data Mining. College Station, USA: [s. n.] , 2005: 636-640.
  • 5傅国强,郭向勇.动态加权关联规则算法的分析与实现[J].计算机工程,2010,36(23):79-81. 被引量:4
  • 6Brin S, Motwani R, Ullman J, et al. Dynamic Itemset Counting and Implication Rules for Market Basket Data[C] //Proc. of 1997 ACM SIGMOD Int’1 Conf. on Management of Data. [S. 1.] : ACM Press, 1997: 255-264.
  • 7Agrawal R, Srikant R. Fast Algorithms for Mining Association Rules[C] //Proc. of the 20th Int’1 Conf. on Very Large Data Bases. Santiago, Chile: [s. n.] , 1994: 487-499.
  • 8SPSS. Data Mining(Clementine)[DB/OL]. (2008-10-30). http:// www.spss.com/data mining/.

二级参考文献5

共引文献3

同被引文献3

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部