期刊文献+

一种软件工作量估算的不确定性度量方法 被引量:4

Uncertainty Measurement Method of Software Effort Estimation
下载PDF
导出
摘要 以COCOMO81模型为基础,结合模型输出方差以及模型与数据自身方差的组合,分别度量模型本身估算值与实际值差距的不确定性,并在此基础上给出预测区间。提出以命中率(SR)与平均相对宽度(MRV)相结合的评测标准。通过采用重采样获得N对训练和测试集合,计算不同置信度下区间SR和MRV的均值,运用SR和MRV的散点图比较不同度量方法获得区间。实验结果表明,该方法能以相同的命中率获得更窄的区间。 This paper proposes a methtnt to assess the uncertainty of using COCOMO81 model. It uses the variance of model's output to assess the uncertainty of model's output. And uses both the data's variance and the model's output to assess the uncertainty of the distance between estimated effort and its real value. Based on the uncertainty, it proposes the prediction interval. It proposes the Mean Relative Variance (MRV) and shooting ration as the measurement to assess the umcertainty. In the experiment, re-Sampling method is employed to get N pairs of train set and test set. The average value of SR and MRV for different confidence level is calculated. After that, the scatter plot of SR and MRV is used to compare the different intervals that generated by different methods of assessing uncertainty. Experimental result shows that the measurement for uncertainty can generate narrower interval at the context of the same shooting ratio.
作者 解浪 杨叶
出处 《计算机工程》 CAS CSCD 2012年第3期39-42,共4页 Computer Engineering
基金 国家自然科学基金资助项目(90718042) 广东省中国科学院全面战略合作基金资助项目(2009B091300131)
关键词 不确定性 软件工作量估算 重采样 预测区间 COCOMO模型 方差 uncertainty software effort estimation re-sampling prediction interval COCOMO model variance
  • 相关文献

参考文献10

  • 1李明树,何梅,杨达,舒风笛,王青.软件成本估算方法及应用[J].软件学报,2007,18(4):775-795. 被引量:65
  • 2顾勋梅,邵志清.基于Java程序的功能点度量[J].计算机工程,2009,35(4):28-30. 被引量:1
  • 3Boehm B W. Software Engineering Economics[M]. [S. 1.] : Prentice Hall, 1981.
  • 4Boehm B W. Software Cost Estimation with COCOMO II[M]. [S. 1.] : Prentice Hall, 2000.
  • 5Shirabad J S, Menzies T J. The PROMISE Repository of Software Engineering Databases[EB/OL]. (2005-10-20). http://promise.site. uottawa.ca/SERepository.
  • 6J?rgensen M, Sj?berg D I K. An Effort Prediction Interval Appro- ach Based on the Empirical Distribution of Previous Estimation Accuracy[J]. Information and Software Technology, 2003, 45(3): 123-136.
  • 7J?rgensen M. Regression Models of Software Development Effort Estimation Accuracy and Bias[J]. Empirical Software Engineering, 2004, 9(4): 297-314.
  • 8Alessandro S S, Robert B V, Giovanni C. Using Uncertainty as a Model Selection and Comparison Criterion[C] //Proceedings of the 5th International Conference on Predictor Models in Software Engineering. Vancouver, Canada: ACM Press, 2009.
  • 9J?rgensen M. Evidence-based Guidelines for Assessment of Soft- ware Development Cost Uncertainty[J]. IEEE Transactions on Software Engineering, 2005, 31(11): 942-954.
  • 10Wasserman L. All of Statistics: A Concise Course in Statistical Inference[M]. [S. 1.] : Springer, 2003.

二级参考文献72

  • 1Rossi P, Fernandez G. Definition and Validation of Design Metrics for Distributed Applications[C]//Proc. of the 9th Int'l Software Metrics Symposium. [S. l.]: IEEE Computer Society, 2003.
  • 2Richard L. A Model for Estimating the Size of a Formal Communication Protocol Specification and Its Implementation[J]. IEEE Trans. on Software Engineering, 2003, 29( 1): 46-62.
  • 3Abran A, Silva I, Primera L. Fields Studies Using Functional Size Measurement in Building Estimation Models for Software Maintenance[J]. Journal of Software Maintenance and Evolution, 2002, 14(1): 31-64.
  • 4Kemerer CF.An empirical validation of software cost estimation models.Communications of the ACM,1987,30(5):417-429.
  • 5Navlakha JK.Choosing a software cost estimation model for your organization:A case study.Information and Management,1990,18(5):255-261.
  • 6Srinivasan K,Fisher D.Machine learning approaches to estimating software development effort.IEEE Trans.on Software Engineering,1995,21(2):126-137.
  • 7Shepperd M,Cartwright M.Predicting with sparse data.IEEE Trans.on Software Engineering,2001,27(11):987-998.
  • 8McGibbon T.Modern cost estimation tools and modern empirical cost and schedule estimation tools.1997.http://www.dacs.dtic.mil/techs/estimation/title.shtml
  • 9Boehm BW,Clark B,Horowitz E,Westland C.Cost models for future software life cycle processes:COCOMO 2.0.Annals of Software Engineering,1995,1:57-94.
  • 10Boehm BW,Valerdi R,Lane J,Brown A.COCOMO suite methodology and evolution.CrossTalk:The Journal of Defense Software Engineering,2005,18(4):20-25.

共引文献64

同被引文献34

  • 1周汉兵,关昕,马力.功能点度量在软件开发中的应用[J].计算机工程与设计,2006,27(3):525-526. 被引量:10
  • 2徐菲菲,苗夺谦,李道国,魏莱.基于覆盖的粗糙模糊集的粗糙熵[J].计算机科学,2006,33(10):179-181. 被引量:13
  • 3李明树,何梅,杨达,舒风笛,王青.软件成本估算方法及应用[J].软件学报,2007,18(4):775-795. 被引量:65
  • 4Matson J, Barret B, Mellichamp J. Software development cost estima- tion using function points. Software Engineering, IEEE Transactions on, 1994 ; (04) :275-287.
  • 5Herroelen W, Leus R. On the merits and pitfalls of critical chain scheduling, Management, 2001; (11): 559-577.
  • 6Verner J M, Evanco W M, Cerpa N. State of the practice : an explor- atory analysis of schedule estimation and software project success pre- diction. Information and Software Technology, 2007; (02): 181-193.
  • 7Wang Y, Song Q B, Shen J Y. Grey learning based software stage-ef- fort estimation. International Conference on Machine Learning and Cybernetics, 2007 ; 8 (3) : 1470-1475.
  • 8Huang Sunjen, Chiu Nanhsing, Liu Yujen. A comparative evaluation on the accuracies of software effort estimates from clustered data. In- formation and Software Technology, 2008; 9(50) : 879-888.
  • 9Carnegie Mellon University SEI Capability Maturity Model Integration (CMMISM). Version 1.2 2006.
  • 10Yang Da, Wan Y X, Tang Z N. COCOMO-U:An extension of CO- COMO H for cost estimation with uncertainty. Lecture Notes in Com- puter Science, 3966/2006:132-141.

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部