期刊文献+

一种行星车视觉系统立体匹配算法 被引量:1

Stereo Matching Algorithm for Planetary Rover Vision System
下载PDF
导出
摘要 针对行星车视觉导航系统,提出一种立体匹配算法。使用Census变换得到一组二进制码流,通过色彩权重和距离权重完成权重计算,采用双通道的方法累加匹配代价。实验结果表明,该算法在时钟频率为100 MHz的情况下,每秒可处理2幅23帧左右的图像,平均误匹配率低于6%。 Aiming at the application of planetary rover vision system, this paper proposes a stereo matching algorithm. It uses Census transformation to get a group of binary code flow, gets through the colour weight and distance weight to complete weight calculating, and uses the method of double channel to accumulate the matching the price. Experimental results show that this algorithm can process 23 frames stereo images per second at 100 MHz, and the average error rate is lower than 6%.
出处 《计算机工程》 CAS CSCD 2012年第3期159-162,共4页 Computer Engineering
基金 国家自然科学基金资助项目(60805030)
关键词 行星车 视觉导航 立体匹配 自适应权重 Census变换 planetary rover vision navigation stereo matching adaptive weight Census transformation
  • 相关文献

参考文献12

  • 1Goldberg S, Maimone M, Matthies L. Stereo Vision and Rover Navigation Software for Planetary Exploration[C] //Proc. of IEEE Aerospace Conference. Northridge, USA: IEEE Press, 2002.
  • 2王保丰,唐歌实,李广云,邢帅.一种月球车视觉系统的匹配算法[J].航空学报,2008,29(1):117-122. 被引量:6
  • 3Yang Qingxiong, Wang Liang. Real-time Global Stereo Matching Using Hierarchical Belief Propagation[C] //Proc. of the British Machine Vision Conference. [S. l.] : IEEE Press, 2006.
  • 4Perri S, Colonna D, Zicari P, et al. SAD-based Stereo Matching Circuit for FPGAs[C] //Proc. of the 13th IEEE International Conference on Electronics, Circuits and Systems. [S. l.] : IEEE Press, 2006.
  • 5Sang K H, Woo S H, Jeong M H, et al. Improved-quality Real-time Stereo Vision Processor[C] //Proc. of the 22nd International Conference on VLSI Design. [S. l.] : IEEE Press, 2009.
  • 6Hariyama M, Takeuchi T, Kameyama M. VLSI Processor for Reliable Stereo Matching Based on Adaptive Window-size Selection[C] //Proc. of IEEE International Conference on Robotics and Automation. [S. l.] : IEEE Press, 2001.
  • 7Middlebury College. Microsoft Stereo Matching Software[EB/OL]. (2010-11-21). www.middlebury.edu/stereo.
  • 8Yoon K J, Kweon I S. Adaptive Support-weight Approach for Correspondence Search[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(4): 650-656.
  • 9Zabih R, Woodfill J. Non-parametric Local Transforms for Com- puting Visual Correspondence[C] //Proc. of European Conference on Computer Vision. Stockholm, Sweden: Springer-Verlag, 1994.
  • 10Chen Yichun, Tsai T H, Hsu B H, et al. Algorithm and Architecture of Disparity Estimation with Mini-census Adaptive Support Weight[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2010, 20(6): 792-805.

二级参考文献3

共引文献5

同被引文献16

  • 1Lazaros N, Sirakoulis G C, Gasteratos A. Review of stereo vision algorithms: from software to hardware [J]. International Journal of Optomechatronics (S 1559-9612), 2008, 2(4): 435-462.
  • 2Yu W, Chen T, Franchetti F, et al. High performance stereo vision designed for massively data parallel platforms [J]. IEEE Transactions on Circuits and Systems for Video Technology (S1051-8215), 2010, 20(11): 1509-1519.
  • 3Cullagh B. Real-time disparity map computation using the cell broadband engine [J]. Journal of Real-Time Image Processing (SI861-8200), 2012, 7(2): 87-93.
  • 4Humenberger M, Zinner C, Weber M, et al. A fast stereo matching algorithm suitable for embedded real-time systems [J]. Computer Vision and Image Understanding (S1077-3142), 2010, 114(11): I180-1202.
  • 5Ambrosch K, Kubinger W. Accurate hardware-based stereo vision [J]. Computer Vision and Image Understanding (S1077-3142), 2010, 114(11): 1303-1316.
  • 6Scharstein D, Szeliski R. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms [J]. International journal of computer vision (S0920-5691), 2002, 47(1-3): 7-42.
  • 7Xu Y, Wang D, Feng T, et al. Stereo computation using radial adaptive windows [C]. Proceedings. 16th International Conference on Pattern Recognition, 2002. USA: IEEE, 2002, 3: 595-598.
  • 8Tombari E Mattoccia S, Di Stefano L. Segmentation-based adaptive support for accurate stereo correspondence [M]. Advances in Image and Video Technology. Germany: Springer Berlin Heidelberg, 2007: 427-438.
  • 9Yoon K J, Kweon I S. Adaptive support-weight approach for correspondence search [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence (S0162-8828), 2006, 28(4): 650-656.
  • 10Motten A, Claesen L. A binary adaptable window SoC architecture for a stereo vision based depth field processor [C]. VLSI System on Chip Conference (VLSI-SoC), 2010 18th IEEE/IFIP. USA: IEEE, 2010: 25-30.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部