期刊文献+

基于CuBICA算法的EEG伪迹去除方法 被引量:1

EEG Artifact Removal Method Based on CuBICA Algorithm
下载PDF
导出
摘要 在高阶累积量和独立分量分析的基础上,提出一种基于CuBICA算法的脑电信号伪迹去除方法。针对脑电信号中常含有的眼电、心电等伪迹问题,利用小波包方法对原始脑电信号去噪,并进行中心化和白化处理,运用CuBICA算法对消噪后的脑电信号进行盲源分离。分析分离后各信号间相关性,结果表明,CuBICA算法能成功分离脑电、眼电与心电信号,有效去除纯脑电信号中的各种伪迹。 According to high order cumulant and Independent Component Analysis(ICA), this paper proposes a method of removing artifacts from Electroencephalogram(EEG) based on CuBICA. The Electroencephalogram which mixing with EOG and EKG signals are denoised by wavelet package analysis, after centering and whitening, the EEG signals which still containing EOG and EKG is separated by CuBICA algorithm. The cross correlation coefficient of the separated signals is analyzed, result shows that CuBICA algorithm can efficiently separate EOG and EKG from EEG, and get pure EEG.
出处 《计算机工程》 CAS CSCD 2012年第3期180-182,186,共4页 Computer Engineering
基金 国家自然科学基金资助项目(60874102)
关键词 脑电信号 伪迹去除 盲源分离 互相关系数 独立分量分析 累积量 Electroencephalogram(EEG) artifact removal Blind Source Separation(BSS) cross correlation coefficient Independent ComponentAnalysis(ICA) cumulant
  • 相关文献

参考文献8

  • 1Akhtar M T, James C J. Focal Artifact Removal from Ongoing EEG——A Hybrid Approach Based on Spatially-constrained ICA and Wavelet De-nosing[C] //Proc. of IEEE Engineering in Medicine and Biology Society. Shanghai, China: [s. n.] , 2009: 4027-4030.
  • 2Blaschke T, Wiskott L. CuBICA: Independent Component Analy- sis by Simultaneous Third-and Fourth-order Cumulant Diagonali- zation[J]. IEEE Transactions on Signal Processing, 2004, 52(5): 1250-1256.
  • 3Comon P. Independent Component Analysis, a New Concept?[J]. Signal Processing, 1994, 36(3): 287-314.
  • 4Wang Bin, Lu Wenkai. An In-depth Comparison on FastICA, CuBICA and IC-fast ICA[C] //Proc. of IEEE ANC’05. [S. 1.] : IEEE Press, 2005: 410-414.
  • 5郭瑞,宋海娜,匡纲要.基于定点ICA算法的人脸识别方法[J].计算机工程,2004,30(9):159-161. 被引量:5
  • 6Hyvarinen A, Oja E. Independent Component Analysis: Algori- thms and Applications[J]. Neural Networks, 2000, 13(4/5): 411-430.
  • 7曲国庆,党亚民,章传银,苏晓庆.小波包消噪方法分析及改进[J].大地测量与地球动力学,2008,28(4):102-106. 被引量:21
  • 8姚志湘,刘焕彬,粟晖.盲信号分离输出与源信号的一致性判断[J].华南理工大学学报(自然科学版),2007,35(5):50-53. 被引量:12

二级参考文献20

共引文献35

同被引文献11

  • 1李广彪,张剑云.基于负熵最大化FastICA算法的雷达信号分选[J].舰船电子对抗,2005,28(3):23-28. 被引量:12
  • 2余先川,胡丹.盲源分离理论与应用[M].北京:科学出版社.2011:1.10.
  • 3斯科尼克.2010.雷达手册[M].北京:电子工业出版社.
  • 4Bell A J, Sejnowski T J. An information-maximization approach to blind separation and blind deconvolution[J~. Neural Computation 1995,7(6) :1129-1159.
  • 5Cardoso J F,Laheld B. Equivariant adaptive source separation[-J~. IEEE Trans. Signal Processing,1996,44(12) :3017-3029.
  • 6Hyvarinen A. Fast and robust fixed-point algorithms for independent component analysis~JJ. Neural Networks,1999, 10(3) ~ 626-634.
  • 7Wang B, Lu W. An In-depth Comparasion on FastICA, CuBICA and IC-FastICA[J3. Lecture Notes in Computer Science, 2005,3611 410 414.
  • 8Hyvarinen A. Survey on independent component analysis[J]. Neural Computing Surveys, 1999,2 (4) :94 128.
  • 9Cardoso J. High-order contrasts for independent component analysis[J]. Neural computation, 1999,11(1) :157-192.
  • 10Gustav D, Dragon O. An Information-Theoretic Approach to Neural Computing[M]. Beriin t Springer,1996. McCullagh P. Tensor Methods in Statistics[M]. London:Chapmann and Hall, 1987,.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部