期刊文献+

基于二部图的公共交通网络模型

Public Transport Network Model Based on Bipartite Graph
下载PDF
导出
摘要 利用现有方法对兰州市公共交通网络进行建模时,不能得到真实网络参数,或复杂度过高。为此,以二部图作为基本模型,将车次作为"上集",站点作为"下集",建立兰州市公共交通网络模型。计算并分析数据,验证其符合小世界特性和无标度网络,并利用Laplacian特征值和最大连通子图相对值来分析网络的性能和连通情况。分析结果证明,该模型在减少网络存储空间的同时能保证计算结果的准确,且对其优化也较简单直观。 Some of the modeling methods are not very suitable to establish the model of public transport network of Lanzhou for the reason that the real parameters of the network cannot be got or the method is with high self-complexity. A model based on bipartite graph is proposed, in which, the bus number as the "top set", the station as the "bottom set", public transport network model of Lanzhou is built. A lot of data are computed and analyzed, which indicates that this network fits with small-world and scale-free network, and analyzes the performance and connectivity with the maximum value of connected subgraph and Laplacian spectrum. Result proves that the use of bipartite graph to express, analyze and calculate the complex network not only guarantees the calculation result when the storage space drops relatively, but also seems direct-viewing and simple when optimizing the complex network on the bipartite graph.
出处 《计算机工程》 CAS CSCD 2012年第3期265-266,269,共3页 Computer Engineering
基金 甘肃省自然科学基金资助项目(0809RJZA017) 兰州理工大学校基金资助项目(0914ZX136)
关键词 复杂网络 二部图 公共交通网络 无标度网络 小世界 网络故障 complex network bipartite graph public transport network scale-free network small-world network fault
  • 相关文献

参考文献8

  • 1Duncan J, Steven H. Collective Dynamics of Small-world Net- works[J]. Nature, 1998, 393(6684): 440-442.
  • 2Barabási A, Albert R. Emergency of Scaling in Random Net- works[J]. Science, 1999, 286(5439): 509-511.
  • 3Guillaume J L, Latapy M. Bipartite Graphs as Models of Complex Networks[J]. Physica A , 2006, 371(2): 795-813.
  • 4Molloy M, Reed B. The Size of the Giant Component of a Random Graph with a Given Degree Sequence[J]. Combinatorics, Probability and Computing, 1998, 7(3): 295-305.
  • 5Dorogovtsev S N, Mendes J F F. Evolution of Networks[J]. Advances in Physics, 2002, 51(4): 1079-1187.
  • 6Sienkiewicz J, Janusz A. Statistical Analysis of 22 Public Transport Networks in Poland[J]. Physical Review E, 2005, 72(4): 46-50.
  • 7YANG Xu-Hua,WANG Bo,WANG Wan-Liang,SUN You-Xian.Research on Some Bus Transport Networks with Random Overlapping Clique Structure[J].Communications in Theoretical Physics,2008,50(11):1249-1254. 被引量:8
  • 8叶东海,蒋国平,宋玉蓉.多局域世界复杂网络中的病毒传播研究[J].计算机工程,2010,36(23):130-132. 被引量:9

二级参考文献32

  • 1J. Sienkiewicz and J.A. Holyst, Phys. Rev. E 72 (2005) 046127.
  • 2C. von Ferber, Y. Holovatch, and V. Palchykov, Cond. Matter Phys. 8 (2005) 225.
  • 3C. von Ferber, Y. Holovatch, and V. Palchykov, Physica A 380 (2007) 580.
  • 4P. Sen, S. Dasgupta, A. Chatterjee, et al., Phys. Rev. E 67 (2003) 036106.
  • 5K.P. Li, Z.Y. Gao, and B.H. Mao, Int. J. Mod. Phys. C 17 (2006) 1339.
  • 6W. Li and X. Cai, Physica A 382 (2007) 693.
  • 7W. Li and X. Cai, Phys. Rev. E 69 (2004) 046106.
  • 8R. Guimera, S. Mossa, A. Turtschi, and L.A.N. Amaral, Proc. Natl, Acad. Sci. (USA) 102 (2005) 7794.
  • 9Z. Wu, L.A. Braunstein, V. Colizza, et al., Phys. Rev. E 74 (2006) 056104.
  • 10M. Marchiori and V. Latora, Physica A 285 (2000) 539.

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部