期刊文献+

结合OCSVM的模拟电路故障诊断方法 被引量:2

Analog Circuit Fault Diagnosis Method Combining OCSVM
下载PDF
导出
摘要 基于支持向量机的传统模拟电路故障诊断方法对新故障无检测能力,且可扩展性较差。针对该问题,提出结合一类支持向量机(OCSVM)和多类支持向量机(MCSVM)的故障诊断方法。该方法采用OCSVM对故障数据进行检测和初步分类,采用MCSVM提高分类性能,以弥补OCSVM分类能力的不足。对OCSVM算法进行改进,以提高其检测和分类性能。通过模拟电路故障诊断实验验证OCSVM改进算法和联合故障诊断方法的有效性。 The traditional diagnosis method based on support vector machine lacks new type fault detection ability and expansibility. To solve this problem, a novel diagnosis method based on the combination of One-class SVM(OCSVM) and Multi-class SVM(MCSVM) is proposed. In this method, the OCSVM module is applied to the detection and preliminary classification of fault data, and the MCSVM module is used to improve the classification capability, which is a shortcoming of the OCSVM. Besides, the OCSVM algorithm is improved to perfect its detection and classification ability. Through an analog circuit fault diagnosis experiment, result shows the effectiveness of the improved OCSVM algorithm and the combined fault diagnosis method.
出处 《计算机工程》 CAS CSCD 2012年第4期170-173,共4页 Computer Engineering
基金 国家部委基金资助项目
关键词 模拟电路故障诊断 支持向量机 一类支持向量机 决策函数 正负类间隔 参数选择 analog circuit fault diagnosis Support Vector Machine(SVM) One-class SVM(OCSVM) decision function distance between positive and negative class parameter selection
  • 相关文献

参考文献5

二级参考文献25

  • 1薛安荣,鞠时光,何伟华,陈伟鹤.局部离群点挖掘算法研究[J].计算机学报,2007,30(8):1455-1463. 被引量:96
  • 2Han J and Kamber M.Data Mining:Concepts and Techniques[M].San Francisco:Morgan Kaufmann Publishers,2006:451-458.
  • 3Giacinto G,Perdisci R,Del Rio M,and Roli F.Intrusion detection in computer networks by a modular ensemble of one-claes classifiers[J].Information Fusion,2008,9(1):69-82.
  • 4Chandola V,Banerjee A,and Kumar V.Anomaly detection:A survey[J].ACM Computing Survey,2009,41(3):1-58.
  • 5Scholkopf B,Williamson R C,Smola A J,Shawe-Taylor J,and Platt J.Support vector method for novelty detection[J].Advances in Neural Information Processing Systems,2000,12(3):582-588.
  • 6Scholkopf B,Platt J C,Shawe-Taylor J,Smola A J,and Williamson R C.Estimating the support of a high-dimensional distribution[J].Neural Computation,2001,13(7):1443-1471.
  • 7Eskin E,Arnold A,Prerau M,Portnoy L,and Stolfo S.Applications of Data Mining in Computer Security[M].Norwell Massachusetts:Kluwer Academic Publishers,2002:77-87.
  • 8Manevitz L M and Yonsef M.One-claes SVMs for document claesification[J].Journal of Machine Learning Research,2002,2(2):139-154.
  • 9He J R,Li M J,Li Z W,Zhang H J,Tong H H,and Zhang C S.Pseudo relevance feedback based on iterative probabilistic one-class SVMs in web image retrieval,In:Advances in Multimedia Information Processing-Pcm 2004,Pt 2,Proceedings[C].Lecture Notes in Computer Science,2004,3332:213-220.
  • 10Scholkopf B,Platt J,and Smola A J.Kernel method for percentile feature extraction[R].Microsoft Research Ltd,2000.

共引文献18

同被引文献27

  • 1吴定海.基于双树复小波和单分类支持向量机的发动机异常检测方法研究[D].石家庄:军械工程学院,2010.
  • 2Achmad Widodo,Bo-Suk Yang.Support vector machine in machine condition monitoring and fault diagnosis[J].Mechanical Systems and Signal Processing,2007,21:2560-2574.
  • 3Scholkopf B,Willianmson R,Smola A,et al.Support vector method for novelty detection[C].Advances in neural information processing systems 12:proceedings of the 1999 conference,MIT Press,2000:582-588.
  • 4David M J Tax,Robert P W Duin.Uniform Object Generation for Optimizing One-class Classifiers[J].Machine Learning Research,2001,2:155-173.
  • 5Vapnik V N.Statistical Learning Theory[M].NY:John Wiley&Sons,1998.
  • 6Banjevic D. Remaining useful life in theory and practice[J]. Metrika, 2009, 69(2) : 337- 349.
  • 7Kamal M, Diego A, Tobon M, et al. Remaining useful life esti- mation of critical components with application tobearings[J]. IEEE Trans. on Reliability, 2012, 61(2) : 292 - 302.
  • 8Miao Q, Xie L, Cui H G, et al. Remaining useful life prediction of lithiumion battery with unseented particle filter techniqueEJ]. Mi croelectronics Reliability, 2013, 53(6) : 805 - 810.
  • 9Hu C, Jain G, Gorka T. Method for estimating capacity and predicting remaining useful life of lithiumion batteryEJJ. Ap- plied Energy, 2014, 126(1) : 182 - 189.
  • 10Benkedjouh T, Medjaher K, Zerhouni N, et al. Remaining use- ful life estimation based on nonlinear feature reduction and sup-port vector regression[J]. Engineering Applications of Artifi- cial Intelligence, 2013, Z6(7): 1751- 1760.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部