期刊文献+

基于粒子群优化算法的LFM信号参数估计 被引量:1

LFM Signal Parameter Estimation Based on Particle Swarm Optimization Algorithm
下载PDF
导出
摘要 在相同时宽范围内,恒定能量的线性调频信号频谱幅度平方与调频斜率呈反比。基于该特性,将信号解调后幅度平方最大值对应的参考信号调频斜率作为其估计值,进而估计其他参数。但该参数估计算法存在高估计精度与大运算量之间的矛盾,为此,将粒子群优化算法引入信号参数的搜索估计过程中。对搜索区间进行高精度划分以提高参数估计的精度,逐步改变参数值,并利用粒子群优化寻找解调后信号幅度平方的最大值,从而估计出相应参数。仿真实验结果证明,该算法运算量较少,且具有更高的估计精度。 With the same time duration, if Linear Frequency Modulation(LFM) signal possesses constant energy, its spectrum amplitude square is inversely proportional to the frequency modulation slope, Based on the theory, the frequency modulation slope and other parameters can be estimated by searching the parameter that is in accord with the largest amplitude square of demodulated signal. But the contradiction between high estimation precision and large computation amount exists in the algorithm. To solve this problem, the Particle Swarm Optimization(PSO) is introduced into the searching process. Searching area is divided more precisely to improve the parameter estimation precision. PSO is used to search the largest amplitude square to get the estimation results. Simulation experimental results validate that this algorithm consumes fewer computation amount but with better estimation precision.
作者 韩宁 尚朝轩
出处 《计算机工程》 CAS CSCD 2012年第4期176-178,共3页 Computer Engineering
关键词 线性调频信号 信号解调 参数估计 粒子群优化 估计精度 Linear Frequency Modulation(LFM) signal signal demodulation parameter estimation Particle Swarm Optimization(PSO) estimation precision
  • 相关文献

参考文献8

  • 1Djuric P M, Kay S M. Parameter Estimation of Chirp Signals[J]. IEEE Trans. on Acoustics, Speech, and Signal Processing, 1990, 38(12): 2118-2126.
  • 2Li Yan, Fu Hua, Kam Pooi-Yuen. Improved, Approximate, Time-domain ML Estimators of Chirp Signal Parameters and Their Performance Analysis[J]. IEEE Trans. on Signal Processing, 2009, 57(4): 1260-1272.
  • 3Ijima H, Ohsumi A, Djurovic I. Parameter Estimation of Chirp Signals in Random Noise Using Wigner Distribution[C] //Proc. of the 47th Midwest Symposium on Circuits and Systems. Hiroshima, Japan: [s. n.] , 2004: 177-180.
  • 4Boashash B, O’Shea P. Use of the Cross Wigner-ville Distribution for Estimation of Instantaneous Frequency[J]. IEEE Trans. on Signal Processing, 1993, 41(3): 1439-1445.
  • 5韩孟飞,王永庆,吴嗣亮,崔嵬.一种低信噪比下LFM信号参数快速估计算法[J].北京理工大学学报,2009,29(2):147-151. 被引量:26
  • 6麦雄发,李玲.基于群体距离的多目标粒子群优化算法[J].计算机工程,2010,36(19):177-179. 被引量:2
  • 7王博,盛卫东,安玮,周一宇,谢恺.基于粒子群优化的传感器管理算法研究[J].信号处理,2009,25(7):1135-1140. 被引量:9
  • 8Skolnik Merrill I.雷达系统导论[M].北京:电子工业出版社,2007.

二级参考文献32

  • 1冯小平,李晨阳.线性调频信号参数快速估计[J].电子对抗技术,2004,19(6):7-10. 被引量:9
  • 2汤晓君,刘君华.多传感器技术的现状与展望[J].仪器仪表学报,2005,26(12):1309-1313. 被引量:21
  • 3张乃通,李晖,张钦宇.深空探测通信技术发展趋势及思考[J].宇航学报,2007,28(4):786-793. 被引量:76
  • 4Abatzoglou T. Fast maximum likelihood joint estimation of frequency and frequency rate[J]. IEEE Trans on Aerospace and Electronics Systems, 1986,22(6) :708 - 715.
  • 5Liang R M, Arun K S. Parameter estimation for superimposed chirp siganls[C]//IEEE International Conference on ASSP. San Francisco, 1992(5) :273 - 276.
  • 6Djuric P M, Kay S M. Parameter estimation of chirp signals[J]. IEEE Transactions on Acoustics, Speech and Signal Processing, 1990,38(12) :2118 - 2126.
  • 7Skolnik Merrill.雷达系统导论[M].3版.北京:电子工业出版社,2006.
  • 8N.Xiong,P.Svensson.Multi-sensor Management for Information Fusion:Issues and Approaches[J].Information Fusion,2002:163-186.
  • 9Samuel Blackman,Robert Popoli.Design and Analysis of Modern Tracking Systems[M].Boston London:Artech House,1999:967-1065.
  • 10J.Kennedy and R.Eberhart.Particle Swarm Optimization[C].IEEE Int.Conf.Neural Networks,1995(4):1942-1948.

共引文献35

同被引文献14

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部