期刊文献+

基于SISO的LDPC码盲译码算法研究

Study on blind decoding algorithm for LDPC codes based on Soft-Input Soft-Output
下载PDF
导出
摘要 针对传统BP译码算法需要初始条件的缺点,本文提出了一种基于软输入软输出(SISO)的LDPC码盲译码算法,所提算法采用类似BP迭代译码算法步骤,通过对距离信息进行迭代处理,实现无需接收信号的信噪比和信道状态即可译码;同时,还将所提盲译码算法推广到多进制LDPC码的译码应用中。本文所提盲译码算法在初始状态难以确定以及接收信号信噪比难以估计的通信信道中具有重要价值。仿真结果表明,所提算法不论是在AWGN信道还是在瑞利衰落信道上都能取得优良的性能,不论是与标准BP译码算法还是与分层BP译码算法相比,在性能相近的情况下,计算复杂度都有所降低。 To deal with the complexity of traditional BP decoding algorithm, a kind of blind decoding algorithm for LDPC codes based on soft-input, soft-output is put forward in this paper. The algorithm uses soft squared Euclidean distance as the metric, realizes decoding by iterating the antilog-sum of the Euclidean distance as the process taken in BP algorithm. The proposed algorithm does not require knowledge of the signal-to-noise ratio of the received signal, and is less complex to implement than other soft decision algorithms. At the same time, a simplified algorithm is also put forward to reduce the computational complexity. What's more, the proposed SBSD decoding algorithm can not only decode Binary LDPC codes, but also can be used for Qary-LDPC codes. Simulations results show that the proposed algorithm can achieve good performance not only on the AWGN channels but also on Rayleigh channel, and the performance is very close to that of the sum-product algorithm, but the computational complexity is reduced sharply.
作者 郭锐 汪立新
出处 《电路与系统学报》 CSCD 北大核心 2012年第1期65-70,30,共7页 Journal of Circuits and Systems
基金 国家自然科学基金(60972049) 浙江省自然科学基金资助(Y1100579)
关键词 低密度奇偶校验码 盲译码 欧拉距离 软输入软输出 多进制 LDPC codes blind decoding euclidean distance StSO M-ary
  • 相关文献

参考文献11

  • 1Marc P C. Fossorier, Miodrag Mihaljevic. Hideki Imai. Reduced Complexity Iterative Decoding of Low-Density Parity-Check Codes Based on Belief Propagation [J]. IEEE Transaction on Communications, 1999, 47(5): 673-680.
  • 2Jinghu Chen. Marc P C. Fossorier Near Optimum Universal Belief Propagation Based Decoding of Low-Density Parity-Check Codes Communications [J]. IEEE Transactions on Communications, 2002, 50(3): 406-414.
  • 3Jinhu Chen, Marc P C. Fossorier. Decoding Low-Density Parity-Check Codes with Normalized APP-Based Algorithm [A]. Globlecom 2001-IEEE Global Telecommunications Conference [C]. San Antonio, USA, 2001-11, 1: 1026-1030.
  • 4Xiao-Yu Hu, Evangelos Eleftheriou, Dieter-Michael Arnold, et al. Efficient Implementations of the Sum-Product Algorithm for Decoding LDPC Codes [A]. Globecom 2001 IEEE Global Telecommunications Conference [C]. San Antonio, USA, 2001-11, 1 : 1036-1041.
  • 5J Zhang, M Fossorier. Shuffled Belief Propagation Decoding [J]. IEEE Trans.Communieations, 2005-02, 53:209-213.
  • 6郭锐,刘济林.LDPC码的一种低复杂度BP译码算法[J].浙江大学学报(工学版),2008,42(3):450-455. 被引量:9
  • 7Ahmed S, Lie-Liang Yang, Hanzo L, et al. Soft Decoding Assisted Interference Cancellation in a Non-Binary LDPC Coded Fast Frequency Hopping Multiuser System Using Product Combining [A]. IEEE 66th Vehicular Technology Conference [C]. USA, 2007. 1717-1721.
  • 8Sahuguede S, Julien-Vergonjanne, A Cances. Soft Decision' LDPC Decoding Over Chi-Square Based Optical Channels [J]. Journal of Lightwave Technology, 2009, 27(16): 3540-3545.
  • 9Cho J Kim, J Sung W. VLSI Implementation of a High-Throughput Soft-Bit-Flipping Decoder for Geometric LDPC Codes [J]. IEEE Transactions on Circuits and Systems, 2010, 99(5): 101-110.
  • 10Olmos P M, Murillo-Fuentes, Perez-Cruz F. Joint Nonlinear Channel Equalization and Soft LDPC Decoding With Gaussian Processes [J]. IEEE Transactions on Signal Processing, 2010, 58(3): 1183-1192.

二级参考文献12

  • 1GALLAGER R G. Low-density parity-check codes [J]. IEEE Transactions on Information Theory, 1961(1) :21 - 28.
  • 2MACKAY D J C. Good error-correcting codes based on very sparse matrices [J]. IEEE Transactions on Information Theory, 1999, 3(45):399 - 431.
  • 3HEUM C C. Technical issues for enhanced and beyond 3G systems[C]//The International Forum Future Mobile Telecommunications&China-EU Post Conference on Beyond 3G. Beijing, China: [s. n.].2002.
  • 4FOSSORIER M P C, MIHALJEVIC M, IMAI H. Reduced complexity iterative decoding of low-density parity check codes based on belief propagation[J]. IEEE Transactions on Communications, 1999, 47(5) :673 - 680.
  • 5CHEN J, FOSSORIER M P C. Near optimum universal belief propagation based decoding of low-density parity check codes [J]. IEEE Transactions on Communications, 2002, 3(50):406 - 414.
  • 6HU Xiao-yu, EYANGELOS E, DIETER-MICHAEL A, et al. Efficient implementations of the sum-product algorithm for decoding LDPC codes [C]//GLOBECOM 2001 IEEE Global Telecommunications Conference[S.l.]:IEEE, 2001,2:1036- 1036E.
  • 7MAO Yong-yi, BANIHASHEMI A H. A new schedule for decoding low-density parity-check codes [C]//GLOBECOM 2001 IEEE Global Telecommunications Conference.[S. l.]: IEEE, 2001, 2:1007-1010.
  • 8ZHANG J, FOSSORIER M. Shuffled belief propagation decoding[J]. IEEE Trans Communications, 2005, 2 (53) :209 - 213.
  • 9LUBY M, MITZENMACHER M, SHOKROLLAHI A. Analysis of low density codes and improved designs using irregular graphs[C]// Proc 30th Annu ACM Symp Theory of Computing.[S.l.].ACM, 1998:249-258.
  • 10LUBY M, MITZENMACHER M, SHOKROLLAHI A. Improved low-density parity-check codes using irregular graphs and belief propagation[C]//Proc 1998 IEEE Int Symp Information Theory. Cambridge, MA: IEEE, 1998: 117.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部