期刊文献+

基于Dirichlet过程无限混合模型的基因表达数据聚类算法 被引量:1

下载PDF
导出
摘要 Dirichlet过程作为一种典型的变参数贝叶斯模型,基于该过程进行的聚类分析无需预先确定聚类数,聚类数作为模型中的参数由模型和数据自主计算得出,因而成为机器学习研究领域中的一个研究热点,可用于海量数据的聚类分析。文章建立Dirichlet过程无限混合模型对DNA基因表达数据展开了聚类分析。模拟测试数据集和急性白血病的DNA基因表达测试数据集的实验结果表明,Dirichlet过程无限混合模型能够准确地估计出数据中的聚类数。
作者 张林 刘辉
出处 《统计与决策》 CSSCI 北大核心 2012年第4期27-29,共3页 Statistics & Decision
基金 中央高校基本科研业务费专项资金资助项目(2010QNA47 2010QNA50) 霍英东基金会青年教师基金资助项目(121066)
  • 相关文献

参考文献8

  • 1Teh,Y.Dirichlet Process[EB/OL].http://www.gatsby.ucl.ac.uk/-ywtehe/ search/npbayes/dp.pdf,2011.
  • 2徐谦,周俊生,陈家骏.Dirichlet过程及其在自然语言处理中的应用[J].中文信息学报,2009,23(5):25-32. 被引量:9
  • 3Neal,R.Markov Chain Sampling Methods for Dirichlet Process Mixture Models[J].Joumal of Computational and Graphical Statistics,2000, 9(2).
  • 4Gelman,A.,Carlin,J.,Stern,H.,Rubin,D.Bayesian Data Analysis[M].New York:CRC Press,2004.
  • 5Kim,S.Mahlet G.Tadesse. Marina Vannucci. Bayesian Variable Selection in Clustering Via dirichlet Process Mixture Models[J]. Biometrika, 2006,93(4).
  • 6Dahl,D.Model-based Clustering for Expression Data Via a Dirichlet Process Mixture Model[J]. Bayesian Inference for Gene Expression and Proteomics,2006.
  • 7Teh, Y.,et al.Hierarchical Dirichlet Processes[J].Journal of the Ameri- can Statistical Association,2006,101(476).
  • 8Rasmussen,C.,Z.Ghahramani. Infinite Mixtures of Gaussian Process Experts[C].Advances in Neural Information Processing Systems 14: Proceedings of the 2002 Conference,2002.

二级参考文献39

  • 1车万翔,刘挺,李生.实体关系自动抽取[J].中文信息学报,2005,19(2):1-6. 被引量:116
  • 2刘远超,王晓龙,徐志明,关毅.文档聚类综述[J].中文信息学报,2006,20(3):55-62. 被引量:65
  • 3Thomas Bayes (1763/1958).Studies in the History of Probability and Statistics:Ⅸ.Thomas Bayes' Essay Towards Solving a Problem in the Doctrine of Chances[J].Biometrika 45:296-315.
  • 4Muller and Quintana.Nonparametric Bayesian data analysis[J].Statist.Sci.2004,19:95-110.
  • 5Ferguson,T.S.A Bayesian analysis of some nonparametric problems[J].Annals of Statistics,1973,vol.1:209-230.
  • 6Antoniak,C.E.Mixtures of Dirichlet processes with applications to Bayesian nonparametric problems[J].Annals of Statistics.1974,2:1152-1174.
  • 7Blackwell,D.and MacQueen,J.Ferguson Distribu-tions via Polya Urn Schemes[J],Annals of Statistics.1973,1:353-355.
  • 8Ewens,W.J.The sampling theory of selectively neutral alleles[J].Theoretical Population Biology,1972,3:87-112.
  • 9Ferguson,T.S.Bayesian density estimation by mixtures of normal distributions.H.Rizvi and J.Rustagi (editors) Recent Advances in Statistics[M].New York:Academic Press.1983,pp.287-303.
  • 10Escobar,M.D.and West,M.Bayesian density estimation and inference using mixtures[J].Journal of the American Statistical Association,1995,90:577-588.

共引文献8

同被引文献19

  • 1袁远,季星来,孙之荣,李衍达.Isomap在基因表达谱数据聚类分析中的应用[J].清华大学学报(自然科学版),2004,44(9):1286-1289. 被引量:11
  • 2GOLUB T R,SLONIM D K,TAMAYO P,et al.Molecular classification of cancer:class discovery and class prediction by gene expression monitoring[J].Science,1999,286(5439):531-537.
  • 3ZHAO Yuhai,YU J X,WANG Guoren,et al.Maximal subspace coregulated gene clustering[J].IEEE Trans Knowl Data Eng,2008,20(1):83-98.
  • 4WIGLE D A,JURISICA I,RADULOVlCH N,et al.Molecular profiling of non-small cell lung cancer and correlation with disease-free survival[J],Cancer Res,2002,62(11):3005-3008.
  • 5DUDOIT S,FRIDLYAND J.A prediction-based resampling method for estimating the number of clusters in a dataset[J].Genome Biol,2002,3(7):0036.1-0036.21.
  • 6SMOLKIN M,GHOSH D.Cluster stability scores for microarray data in cancer studies[J].BMC Bioinformatics,2003,4:36.
  • 7MONTl S,TAMAYO P,MESIROV J,et al.Consensus clustering:a resamlping-based method for class discovery and visualization of gene expression microarray data[J].Mach Learn,2003,52(1-2):91-118.
  • 8HANDL J, KNOWLES J,KELL D B.Computationai cluster validation in post-genomic data analysis[J].Bioinformatics,2005,21(15):3201-3212.
  • 9BERTONI A,VALENTINI G.Randomized maps for assessing the reliability of patients clusters in DNA microarray data analyses[J].Artif Intell Med,2006,37(2):85-109.
  • 10YU Zhiwen,WONG H S,WANG Hongqiang.Graph-based consensus clustering for class discovery from gene expression data[J].Bioinformatics,2007,23(21):2888-2896.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部