期刊文献+

基于“平面前锋”启动模型的计量用钠热管启动特性 被引量:6

Starting characteristics of sodium heat pipe in metrology based on 'flat-front' startup model
下载PDF
导出
摘要 通过平面前锋启动模型分析了计量用钠热管的启动特性。介绍了计量用钠热管的结构和特点,建立了计量用钠热管的平面前锋启动模型。以输入功率1000W为例,计算分析了热管启动过程中轴向的温度分布,通过与文献值的比较,说明平面前锋启动模型是适用于计量用高温热管的。并利用平面前锋启动模型分析了计量用钠热管的转折点温度以及不同输入功率情况下热管的启动时间;蒸气通道直径为100mm时,蒸气密度为0.31×10-4 kg·m-3,相应的转变温度为628.2K;在输入功率分别为800、1000、1200W时,计量用钠热管的热区移动300mm的时间分别是1200、919、681s。对于计量用钠热管,管径大且长度短,所以启动较容易,一般不考虑热管的工作极限。 The structure and characteristics of the sodium heat pipe in metrology were described.The flat-front startup model for the heat pipe was established and used to analyze the starting characteristics of the heat pipe.As an example,with the input power of 1000 W,the axial temperature distribution in the wall at the startup of heat pipe was calculated and compared with the literature values,indicating that the flat-front startup model is applicable to the sodium heat pipe in metrology.Turning point temperature is an important parameter in startup process of high temperature heat pipe.The turning point temperature of the sodium heat pipe and the start-up time under different input power were analyzed.With the vapor channel diameter of 100 mm and vapor density 0.31×10-4 kg·m-3,the transition temperature is 628.2 K.With the input power of 800 W,1000 W,and 1200 W,the time for the hot-zone to move 300 mm in the heat pipe is 1200 s,919 s and 681 s,respectively.The sodium heat pipe has a larger diameter,which makes the heat pipe start easily without considering the limitations of heat pipe generally.
出处 《化工学报》 EI CAS CSCD 北大核心 2012年第3期781-787,共7页 CIESC Journal
基金 国家重点基础研究发展计划项目(2011CB710704)~~
关键词 平面前锋启动模型 钠热管 转折点 启动时间 flat-front startup model; sodium heat pipe; turning point; start-up time;
  • 相关文献

参考文献15

  • 1Grover G M, Cotter T P, Erikson G F. Structure of very high thermal conductance [J]. J. Apply Phys. , 1964, 35 (6): 1990-1991.
  • 2Deverall J E, Kemme J E, Florschuetz L W. Sonic limitations and startup problems of heat pipes [R]. New Mexico: Los Alamos Scientific Laboratory, 1970.
  • 3Faghri A, Buchko M, Cao Y. A study of high temperature heat pipes with multiple heat sources and sinks ( I ): Experimental methodology and frozen startup profiles [J]. Heat Transfer, 1991, 113:1003-1009.
  • 4Zhang Hong, Zhuang Jun. Research, development and industrial application of heat pipe technology in China [J]. Applied Thermal Engineering, 2003, 23 (9):1067-1083.
  • 5Brost O, Munzel W D. Heat in Europe//Proceeding 10th pipe applications development Annual Intersociety Energy Conversion Engineering Conference [ C ]. New York Institute of Electrical and Electronics Engineers, 1975: 18-22.
  • 6闫小克,张金涛,马重芳,吕卓凡,段宇宁.同轴等温钠热管的研制[J].计量技术,2009(5):7-10. 被引量:1
  • 7闫小克,吕卓凡,马重芳,李杰,段宇宁,Xiao-ke Zhuo-fan Chong-fang Yu-ning.高精度钠热管固定点炉及其等温特性[J].计量学报,2009(6). 被引量:7
  • 8Cotter T P. Theory of heat pipes [R]. USAEC Report, LA3246, 1965:50.
  • 9Sockol P M, Forman R. Re examination of heat pipe startup//Proc. 9th IEEE Thermionic Conversion[C].Miami Beach, 1970:571-573.
  • 10Beam J E. Transient heat pipe analysis//AIAA 20th Thermophysics Conference [ C]. Williamsburg, VA, 1985:936-946.

二级参考文献14

  • 1中国科学院力学研究所,北京控制工程研究所.外延炉等温热管(科学技术报告0089).科学技术文献出版社.
  • 2宋恒学 金奉善.铜、镍、铝管子的冷压焊密封性能[J].控制工程,1987,(2).
  • 3James Martin, Pat Salvail, Sodium heat pipe module processing for the SAFE - 100 Reactor Concept, Proceedings of Space Technology and Applications International Forum - STAIF 2004, New York, 148 - 155
  • 4G. P. Peterson, An introduction to heat pipes, 1994
  • 5S.W.纪著,蒋章焰译.热管理论与使用.科学出版社,1981.
  • 6G. F. Strouse, NIST implementation and realization of ITS - 90 over the range 83K to 1235K: Reproducibility, stability, and uncertainties. Temperature: Its Measurement and Control in Science and Industry ( Vol. 6), American Institute of Physics, 1992, 169 - 174
  • 7Gregory E Strouse and George T. Furnkawa, Thermal Characteristics of the NIST Fixed - Point Ceils, Furnace, and Maintenance Baths over the Temperature Range from 83. 8058K to 1234.93K. Proceedings of the 7^th International Symposium on Temperature and Thermal Measurements in Industry and Science (TEMPMEKO' 99 ) . Delft, NMi-VSL, 1999, 153-158
  • 8P. Marcarino, P. P. M. Steur, R. Dematteis, Realization at IMGC of the ITS -90 fixed Points from the argon triple point upwards, Temperature: Its Measurement and Control in Science and Industry ( Vol. 7), American Institute of Physics, 2003, 65 - 70
  • 9Cheng Yinhang, Liu Yaping, Li Yongqian, Jin Xiuying, Song Hengxue, A medium temperature radiation calibration facility using a new design of heat pipe body as a standard source, Measurement Science and Technology, 2001(12), 491 -494
  • 10P. Marcarino, A. Merlone, G. Coggiola, A. Tiziani. Gas - controlled heat pipe for thermometer calibration between 450℃ and 950℃. Proceedings of the 7^th International Symposium on Temperature and Thermal Measurements in Industry and Science ( TEMPMEKO' 99), Delft, NMi - VSL, 1999, 298 - 303

共引文献6

同被引文献39

引证文献6

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部